HOME





Quantity Calculus
Quantity calculus is the formal method for describing the mathematical relations between ''abstract'' physical quantities. Its roots can be traced to Fourier's concept of dimensional analysis (1822). The basic axiom of quantity calculus is Maxwell's description of a physical quantity as the product of a "numerical value" and a "reference quantity" (i.e. a "unit quantity" or a "unit of measurement"). De Boer summarized the multiplication, division, addition, association and commutation rules of quantity calculus and proposed that a full axiomatization has yet to be completed. Measurements are expressed as products of a numeric value with a unit symbol, e.g. "12.7 m". Unlike algebra, the unit symbol represents a measurable quantity such as a metre, not an algebraic variable i.e. the unit symbol does not satisfy the axioms of arithmetic. A careful distinction needs to be made between abstract quantities and measurable quantities. The multiplication and division rules of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Physical Quantity
A physical quantity (or simply quantity) is a property of a material or system that can be Quantification (science), quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ''numerical value'' and a ''unit of measurement''. For example, the physical quantity mass, symbol ''m'', can be quantified as ''m'n''kg, where ''n'' is the numerical value and kg is the unit symbol (for kilogram). Quantities that are vectors have, besides numerical value and unit, direction or orientation in space. Components Following ISO 80000-1, any value or Magnitude (mathematics), magnitude of a physical quantity is expressed as a comparison to a unit of that quantity. The ''value'' of a physical quantity ''Z'' is expressed as the product of a ''numerical value'' (a pure number) and a unit [''Z'']: :Z = \ \times [Z] For example, let Z be "2 metres"; then, \ = 2 is the numerical value and [Z] = \mathrm is the unit. Conversely, the nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variable (mathematics)
In mathematics, a variable (from Latin language, Latin ) is a Mathematical symbol, symbol, typically a letter, that refers to an unspecified mathematical object. One says colloquially that the variable ''represents'' or ''denotes'' the object, and that any valid candidate for the object is the value (mathematics), value of the variable. The values a variable can take are usually of the same kind, often numbers. More specifically, the values involved may form a Set (mathematics), set, such as the set of real numbers. The object may not always exist, or it might be uncertain whether any valid candidate exists or not. For example, one could represent two integers by the variables and and require that the value of the square of is twice the square of , which in algebraic notation can be written . A definitive proof that this relationship is impossible to satisfy when and are restricted to integer numbers isn't obvious, but it has been known since ancient times and has had a big ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantities, Units And Symbols In Physical Chemistry
''Quantities, Units and Symbols in Physical Chemistry'', also known as the ''Green Book'', is a compilation of terms and symbols widely used in the field of physical chemistry. It also includes a table of physical constants, tables listing the properties of elementary particles, chemical elements, and nuclides, and information about conversion factors that are commonly used in physical chemistry. The ''Green Book'' is published by the International Union of Pure and Applied Chemistry (IUPAC) and is based on published, citeable sources. Information in the ''Green Book'' is synthesized from recommendations made by IUPAC, the International Union of Pure and Applied Physics (IUPAP) and the International Organization for Standardization (ISO), including recommendations listed in the IUPAP Red Book ''Symbols, Units, Nomenclature and Fundamental Constants in Physics'' and in the ISO 31 standards. History, list of editions, and translations to non-English languages The third edition of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Steradian
The steradian (symbol: sr) or square radian is the unit of solid angle in the International System of Units (SI). It is used in three-dimensional geometry, and is analogous to the radian, which quantifies planar angles. A solid angle in the form of a circular cone can be projected onto a sphere from its centre, delineating a spherical cap where the cone intersects the sphere. The magnitude of the solid angle expressed in steradians is defined as the quotient of the surface area of the spherical cap and the square of the sphere's radius. This is analogous to the way a plane angle projected onto a circle delineates a circular arc on the circumference, whose length is proportional to the angle. Steradians can be used to measure a solid angle of any projected shape. The solid angle subtended is the same as that of a cone with the same projected area. A solid angle of one steradian subtends a cone aperture of approximately 1.144 radians or 65.54 degrees. In the SI, solid angle i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Radian
The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at the centre of a circle by an Circular arc, arc that is equal in length to the radius. The unit was formerly an SI supplementary unit and is currently a dimensionless unit, dimensionless SI derived unit,: "The CGPM decided to interpret the supplementary units in the SI, namely the radian and the steradian, as dimensionless derived units." defined in the SI as 1 rad = 1 and expressed in terms of the SI base unit metre (m) as . Angles without explicitly specified units are generally assumed to be measured in radians, especially in mathematical writing. Definition One radian is defined as the angle at the center of a circle in a plane that wikt:subtend, subtends an arc whose length equals the radius of the circle. More generally, the magnit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dimensionless Quantity
Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into unit of measurement, units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined Unit of measurement, units. For instance, alcohol by volume (ABV) represents a volumetric ratio; its value remains independent of the specific Unit of volume, units of volume used, such as in milliliters per milliliter (mL/mL). The 1, number one is recognized as a dimensionless Base unit of measurement, base quantity. Radians serve as dimensionless units for Angle, angular measurements, derived from the universal ratio of 2π times the radius of a circle being equal to its circumference. Dimensionless quantities play a crucial role serving as parameters in differential equations in various technical disciplines. In calculus, concepts like the unitless ratios ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SI Derived Unit
SI derived units are units of measurement derived from the seven SI base units specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriate power of exponentiation (see: Buckingham π theorem). Some are dimensionless, as when the units cancel out in ratios of like quantities. SI coherent derived units involve only a trivial proportionality factor, not requiring conversion factors. The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m2), the SI derived unit of area; and the kilogram per cubic metre (kg/m3 or kg⋅m−3), the SI derived unit of density. The names of SI coherent derived units, when written in full, are always in lowercase. However, the symbols for units named after persons are written with an uppercase ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SI Base Unit
The SI base units are the standard units of measurement defined by the International System of Units (SI) for the seven base quantities of what is now known as the International System of Quantities: they are notably a basic set from which all other SI units can be derived. The units and their physical quantities are the second for time, the metre (sometimes spelled meter) for length or distance, the kilogram for mass, the ampere for electric current, the kelvin for thermodynamic temperature, the mole for amount of substance, and the candela for luminous intensity. The SI base units are a fundamental part of modern metrology, and thus part of the foundation of modern science and technology. The SI base units form a set of mutually independent dimensions as required by dimensional analysis commonly employed in science and technology. The names and symbols of SI base units are written in lowercase, except the symbols of those named after a person, which are written ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abstract Quantity
Abstract may refer to: *"Abstract", a 2017 episode of the animated television series ''Adventure Time'' * ''Abstract'' (album), 1962 album by Joe Harriott * Abstract algebra, sets with specific operations acting on their elements * Abstract of title, a summary of the documents affecting the title to a parcel of land * Abstract (law), a summary of a legal document * Abstract (summary), in academic publishing * Abstract art, artistic works that do not attempt to represent reality or concrete subjects * '' Abstract: The Art of Design'', 2017 Netflix documentary series * Abstract music, music that is non-representational * Abstract object in philosophy * Abstract structure in mathematics * Abstract type in computer science * The property of an abstraction * Q-Tip (musician), also known as "The Abstract" * Abstract and concrete In philosophy and the arts, a fundamental distinction exists between abstract and concrete entities. While there is no universally accepted definition, commo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiomatization
In mathematics and logic, an axiomatic system is a set of formal statements (i.e. axioms) used to logically derive other statements such as lemmas or theorems. A proof within an axiom system is a sequence of deductive steps that establishes a new statement as a consequence of the axioms. An axiom system is called complete with respect to a property if every formula with the property can be derived using the axioms. The more general term theory is at times used to refer to an axiomatic system and all its derived theorems. In its pure form, an axiom system is effectively a syntactic construct and does not by itself refer to (or depend on) a formal structure, although axioms are often defined for that purpose. The more modern field of model theory refers to mathematical structures. The relationship between an axiom systems and the models that correspond to it is often a major issue of interest. Properties Four typical properties of an axiom system are consistency, relativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metrologia
''Metrologia'' is a bimonthly journal dealing with the scientific aspects of metrology. It has been running since 1965 and has been published by the International Bureau of Weights and Measures since 1991. Since 2003 the journal has been published by IOP Publishing on behalf of the bureau. The journal covers the fundamentals of measurements, in particular those dealing with the seven base units of the International System of Units (metre, kilogram, second, ampere, kelvin, candela, mole) or proposals to replace them. The editors-in-chief are Sten Bergstrand (RISE Research Institutes of Sweden) and Janet Miles (International Bureau of Weights and Measures). Abstracting and indexing This journal is indexed by the following databases: *Science Citation Index Expanded *Scopus *Inspec *Chemical Abstracts Service *Compendex *GeoRef *MathSciNet *Astrophysics Data System The SAO/NASA Astrophysics Data System (ADS) is a digital library portal for researchers on astronomy and phy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Of Measurement
A unit of measurement, or unit of measure, is a definite magnitude (mathematics), magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other quantity of that kind can be expressed as a multiple of the unit of measurement. For example, a length is a physical quantity. The metre (symbol m) is a unit of length that represents a definite predetermined length. For instance, when referencing "10 metres" (or 10 m), what is actually meant is 10 times the definite predetermined length called "metre". The definition, agreement, and practical use of units of measurement have played a crucial role in human endeavour from early ages up to the present. A multitude of System of measurement, systems of units used to be very common. Now there is a global standard, the International System of Units (SI), the modern form of the metric system. In trade, weights and measures are often a su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]