HOME
*



picture info

Pulsating White Dwarf
A pulsating white dwarf is a white dwarf star whose luminosity varies due to non-radial gravity wave pulsations within itself. Known types of pulsating white dwarfs include DAV, or ZZ Ceti, stars, with hydrogen-dominated atmospheres and the spectral type DA; DBV, or V777 Her, stars, with helium-dominated atmospheres and the spectral type DB; and GW Vir stars, with atmospheres dominated by helium, carbon, and oxygen, and the spectral type PG 1159. (Some authors also include non-PG 1159 stars in the class of GW Vir stars.) GW Vir stars may be subdivided into DOV and PNNV stars; they are not, strictly speaking, white dwarfs but ''pre-white dwarfs'' which have not yet reached the white dwarf region on the Hertzsprung-Russell diagram. A subtype of DQV stars, with carbon-dominated atmospheres, has also been proposed, and in May 2012, the first extremely low mass variable (ELMV) white dwarf was reported. These variables all exhibit small (1%–30%) variations in light output, arisin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

White Dwarf
A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes from the emission of residual thermal energy; no fusion takes place in a white dwarf. The nearest known white dwarf is at 8.6 light years, the smaller component of the Sirius binary star. There are currently thought to be eight white dwarfs among the hundred star systems nearest the Sun. The unusual faintness of white dwarfs was first recognized in 1910. The name ''white dwarf'' was coined by Willem Luyten in 1922. White dwarfs are thought to be the final evolutionary state of stars whose mass is not high enough to become a neutron star or black hole. This includes over 97% of the other stars in the Milky Way. After the hydrogen- fusing period of a main-sequence star of low or medium mass ends, such a star will expand to a red ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ross 548
Ross 548 is a white dwarf in the equatorial constellation of Cetus. With a mean apparent visual magnitude of 14.2 it is much too faint to be visible to the naked eye. Based on parallax measurements, it is located at a distance of 107 light years from the Sun. It was found to be variable in 1970 and in 1972 it was given the variable star designation ZZ Ceti. This is a pulsating white dwarf of the DAV type that is the prototype of the ZZ Ceti variable class., pp. 891, 895. This DA-class white dwarf is the surviving core of a red giant star that ceased nuclear fusion while shedding its outer envelope. It has a (presumably) homogeneous core of carbon and oxygen, a relatively thin outer envelope of hydrogen, and a helium mantle. The object has 65% of the mass of the Sun, with 1.2% of the Sun's radius. It is radiating 0.3% of the luminosity of the Sun at an effective temperature of 12,281 K. Ross 548 is spinning with a period of ~38 hours. The dominant p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Second
The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of Units ( SI) is more precise:The second ..is defined by taking the fixed numerical value of the caesium frequency, Δ''ν''Cs, the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be when expressed in the unit Hz, which is equal to s−1. This current definition was adopted in 1967 when it became feasible to define the second based on fundamental properties of nature with caesium clocks. Because the speed of Earth's rotation varies and is slowing ever so slightly, a leap second is added at irregular intervals to civil time to keep clocks in sync with Earth's rotation. Uses Analog clocks and watches often ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vibrational Modes
A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions. The most general motion of a system is a superposition of its normal modes. The modes are normal in the sense that they can move independently, that is to say that an excitation of one mode will never cause motion of a different mode. In mathematical terms, normal modes are orthogonal to each other. General definitions Mode In the wave theory of physics and engineering, a mode in a dynamical system is a standing wave state of exci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asymptotic Giant Branch
The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) late in their lives. Observationally, an asymptotic-giant-branch star will appear as a bright red giant with a luminosity ranging up to thousands of times greater than the Sun. Its interior structure is characterized by a central and largely inert core of carbon and oxygen, a shell where helium is undergoing fusion to form carbon (known as helium burning), another shell where hydrogen is undergoing fusion forming helium (known as hydrogen burning), and a very large envelope of material of composition similar to main-sequence stars (except in the case of carbon stars). Stellar evolution When a star exhausts the supply of hydrogen by nuclear fusion processes in its core, the core contracts and its temperature increases, causing the outer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PG 1159-035
PG 1159-035 is the prototypical PG 1159 star after which the class of PG 1159 stars was named. It was discovered in the Palomar-Green survey of ultraviolet-excess stellar objects and, like the other PG 1159 stars, is in transition between being the central star of a planetary nebula and being a white dwarf. The luminosity of PG 1159-035 was observed to vary in 1979, and it was given the variable star designation ''GW Vir'' in 1985. Variable PG 1159 stars may be called ''GW Vir'' stars, or the class may be split into ''DOV'' and ''PNNV'' stars. The variability of PG 1139-035, like that of other GW Vir stars, arises from non-radial gravity wave pulsations within itself. Its light curve has been observed intensively by the Whole Earth Telescope over a 264-hour period in March 1989, and over 100 of its vibrational modes have been found in the resulting vibrational spectrum, with periods ranging from 300 to 1,000 second The second (symbol: s) is the unit of time in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GD 358
GD 358 is a variable white dwarf star of the DBV type. Like other pulsating white dwarfs, its variability arises from non-radial gravity wave pulsations within the star itself. GD 358 was discovered during the 1958–1970 Lowell Observatory survey for high proper motion stars in the Northern Hemisphere. Although it did not have high proper motion, it was noticed that it was a very blue star, and hence might be a white dwarf. Greenstein confirmed this in 1969. In 1968, Arlo U. Landolt discovered the first intrinsically variable white dwarf when he found that HL Tau 76 varied in brightness with a period of approximately 749.5 seconds, or 12.5 minutes.A New Short-Period Blue Variable
Arlo U. Landolt, ''Astrophysical Journal'' 153, #1 (July 1968), pp. 151–164.
By the middle of the 1970 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Don Winget
Don E. Winget is an American astronomer and astrophysicist who studies white dwarf stars. He is the Harlan J. Smith Centennial Professor in Astronomy and a university distinguished teaching professor at the University of Texas at Austin. Research Much of Winget's research concerns the study of white dwarf stars. Winget's doctoral research at the University of Rochester predicted the existence of DBV stars, a certain class of pulsating white dwarf. After becoming a faculty member at the University of Texas, he and his colleagues discovered GD 358, a star of this class, fulfilling the prediction of his dissertation and marking the first time in which a class of variable stars was predicted to exist before any instances of it were observed. With Ed Nather, his colleague at University of Texas, Winget introduced the technique for studying the seismology and the inner structure of white dwarfs called "Whole Earth Telescope". The technique involves coordinating a network of sma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Galactic Disk
A galactic disc (or galactic disk) is a component of disc galaxies, such as spiral galaxies and lenticular galaxies. Galactic discs consist of a stellar component (composed of most of the galaxy's stars) and a gaseous component (mostly composed of cool gas and dust). The stellar population of galactic discs tend to exhibit very little random motion with most of its stars undergoing nearly circular orbits about the galactic center. Discs can be fairly thin because the disc material's motion lies predominantly on the plane of the disc (very little vertical motion). The Milky Way's disc, for example is approximately 1 kly thick but thickness can vary for discs in other galaxies. Stellar component Exponential surface brightness profiles Galactic discs have surface brightness profiles that very closely follow exponential functions in both the radial and vertical directions. Radial profile The surface brightness radial profile of the galactic disc of a typical disc galaxy (view ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]