HOME
*





Projective Unitary Group
In mathematics, the projective unitary group is the quotient group, quotient of the unitary group by the right multiplication of its centre of a group, center, , embedded as scalars. Abstractly, it is the Holomorphic function, holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space. In terms of matrix (mathematics), matrices, elements of are complex unitary matrices, and elements of the center are diagonal matrices equal to multiplied by the identity matrix. Thus, elements of correspond to equivalence classes of unitary matrices under multiplication by a constant phase . Abstractly, given a Hermitian space , the group is the image of the unitary group in the automorphism group of the projective space . Projective special unitary group The projective special unitary group PSU() is equal to the projective unitary group, in contrast to the orthogonal case. The connections between the U(), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perfect Group
In mathematics, more specifically in group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no non-trivial abelian quotients (equivalently, its abelianization, which is the universal abelian quotient, is trivial). In symbols, a perfect group is one such that ''G''(1) = ''G'' (the commutator subgroup equals the group), or equivalently one such that ''G''ab = (its abelianization is trivial). Examples The smallest (non-trivial) perfect group is the alternating group ''A''5. More generally, any non-abelian simple group is perfect since the commutator subgroup is a normal subgroup with abelian quotient. Conversely, a perfect group need not be simple; for example, the special linear group over the field with 5 elements, SL(2,5) (or the binary icosahedral group, which is isomorphic to it) is perfect but not simple (it has a non-trivial center containing \left(\begin-1 & 0 \\ 0 & -1\end\right) = \left(\begin4 & 0 \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twisted K-theory
In mathematics, twisted K-theory (also called K-theory with local coefficients) is a variation on K-theory, a mathematical theory from the 1950s that spans algebraic topology, abstract algebra and operator theory. More specifically, twisted K-theory with twist ''H'' is a particular variant of K-theory, in which the twist is given by an integral 3-dimensional cohomology class. It is special among the various twists that K-theory admits for two reasons. First, it admits a geometric formulation. This was provided in two steps; the first one was done in 1970 (Publ. Math. de l' IHÉS) by Peter Donovan and Max Karoubi; the second one in 1988 by Jonathan Rosenberg iContinuous-Trace Algebras from the Bundle Theoretic Point of View In physics, it has been conjectured to classify D-branes, Ramond-Ramond field strengths and in some cases even spinors in type II string theory. For more information on twisted K-theory in string theory, see K-theory (physics). In the broader context of K- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Extension
In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence :1\to N\;\overset\;G\;\overset\;Q \to 1. If G is an extension of Q by N, then G is a group, \iota(N) is a normal subgroup of G and the quotient group G/\iota(N) is isomorphic to the group Q. Group extensions arise in the context of the extension problem, where the groups Q and N are known and the properties of G are to be determined. Note that the phrasing "G is an extension of N by Q" is also used by some. Since any finite group G possesses a maximal normal subgroup N with simple factor group G/N, all finite groups may be constructed as a series of extensions with finite simple groups. This fact was a motivation for completing the classification of finite simple groups. An extension is called a central extension if the subgroup N lies in the cente ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Long Exact Sequence
An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and group homomorphisms is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other s. For example, one could have an exact sequence of

Projective Representation
In the field of representation theory in mathematics, a projective representation of a group ''G'' on a vector space ''V'' over a field ''F'' is a group homomorphism from ''G'' to the projective linear group \mathrm(V) = \mathrm(V) / F^*, where GL(''V'') is the general linear group of invertible linear transformations of ''V'' over ''F'', and ''F''∗ is the normal subgroup consisting of nonzero scalar multiples of the identity transformation (see Scalar transformation). In more concrete terms, a projective representation of G is a collection of operators \rho(g)\in\mathrm(V),\, g\in G satisfying the homomorphism property up to a constant: :\rho(g)\rho(h) = c(g, h)\rho(gh), for some constant c(g, h)\in F. Equivalently, a projective representation of G is a collection of operators \tilde\rho(g)\in\mathrm(V), g\in G, such that \tilde\rho(gh)=\tilde\rho(g)\tilde\rho(h). Note that, in this notation, \tilde\rho(g) is a '' set'' of linear operators related by multiplication with some ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cohomology
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory. From its beginning in topology, this idea became a dominant method in the mathematics of the second half of the twentieth century. From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications. At a basic level, this has to do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homology (mathematics)
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eilenberg–MacLane Space
In mathematics, specifically algebraic topology, an Eilenberg–MacLane space Saunders Mac Lane originally spelt his name "MacLane" (without a space), and co-published the papers establishing the notion of Eilenberg–MacLane spaces under this name. (See e.g. ) In this context it is therefore conventional to write the name without a space. is a topological space with a single nontrivial homotopy group. Let ''G'' be a group and ''n'' a positive integer. A connected topological space ''X'' is called an Eilenberg–MacLane space of type K(G,n), if it has ''n''-th homotopy group \pi_n(X) isomorphic to ''G'' and all other homotopy groups trivial. If n > 1 then ''G'' must be abelian. Such a space exists, is a CW-complex, and is unique up to a weak homotopy equivalence, therefore any such space is often just called K(G,n). The name is derived from Samuel Eilenberg and Saunders Mac Lane, who introduced such spaces in the late 1940s. As such, an Eilenberg–MacLane space is a spec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or '' holes'', of a topological space. To define the ''n''-th homotopy group, the base-point-preserving maps from an ''n''-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes. Two mappings are homotopic if one can be continuously deformed into the other. These homotopy classes form a group, called the ''n''-th homotopy group, \pi_n(X), of the given space ''X'' with base point. Topological spaces with differing homotopy groups are never equivalent (homeomorphic), but topological spaces that homeomorphic have the same homotopy groups. The notion of homotopy of paths was introduced by Camille Jordan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classifying Space
In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e. a topological space all of whose homotopy groups are trivial) by a proper free action of ''G''. It has the property that any ''G'' principal bundle over a paracompact manifold is isomorphic to a pullback of the principal bundle ''EG'' → ''BG''. As explained later, this means that classifying spaces represent a set-valued functor on the homotopy category of topological spaces. The term classifying space can also be used for spaces that represent a set-valued functor on the category of topological spaces, such as Sierpiński space. This notion is generalized by the notion of classifying topos. However, the rest of this article discusses the more commonly used notion of classifying space up to homotopy. For a discrete group ''G'', ''BG'' is, roughly speaking, a path-connected topological space ''X'' such that the fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BU(1)
In mathematics, the classifying space for the unitary group U(''n'') is a space BU(''n'') together with a universal bundle EU(''n'') such that any hermitian bundle on a paracompact space ''X'' is the pull-back of EU(''n'') by a map ''X'' → BU(''n'') unique up to homotopy. This space with its universal fibration may be constructed as either # the Grassmannian of ''n''-planes in an infinite-dimensional complex Hilbert space; or, # the direct limit, with the induced topology, of Grassmannians of ''n'' planes. Both constructions are detailed here. Construction as an infinite Grassmannian The total space EU(''n'') of the universal bundle is given by :EU(n)=\left \. Here, ''H'' denotes an infinite-dimensional complex Hilbert space, the ''e''''i'' are vectors in ''H'', and \delta_ is the Kronecker delta. The symbol (\cdot,\cdot) is the inner product on ''H''. Thus, we have that EU(''n'') is the space of orthonormal ''n''-frames in ''H''. The group action of U(''n'') on this space i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]