Particle Number
The particle number (or number of particles) of a thermodynamic system, conventionally indicated with the letter ''N'', is the number of constituent particles in that system. The particle number is a fundamental parameter in thermodynamics which is conjugate to the chemical potential. Unlike most physical quantities, particle number is a dimensionless quantity. It is an extensive parameter, as it is directly proportional to the size of the system under consideration, and thus meaningful only for closed systems. A constituent particle is one that cannot be broken into smaller pieces at the scale of energy ''k·T'' involved in the process (where ''k'' is the Boltzmann constant and ''T'' is the temperature). For example, for a thermodynamic system consisting of a piston containing water vapour, the particle number is the number of water molecules in the system. The meaning of constituent particle, and thereby of particle number, is thus temperaturedependent. Determining the particl ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Thermodynamic System
A thermodynamic system is a body of matter and/or radiation, confined in space by walls, with defined permeabilities, which separate it from its surroundings. The surroundings may include other thermodynamic systems, or physical systems that are not thermodynamic systems. A wall of a thermodynamic system may be purely notional, when it is described as being 'permeable' to all matter, all radiation, and all forces. A state of a thermodynamic system can be fully described in several different ways, by several different sets of thermodynamic state variables. A widely used distinction is between ''isolated'', ''closed'', and ''open'' thermodynamic systems. An isolated thermodynamic system has walls that are nonconductive of heat and perfectly reflective of all radiation, that are rigid and immovable, and that are impermeable to all forms of matter and all forces. (Some writers use the word 'closed' when here the word 'isolated' is being used.) A closed thermodynamic system is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Avogadro Constant
The Avogadro constant, commonly denoted or , is the proportionality factor that relates the number of constituent particles (usually molecules, atoms or ions) in a sample with the amount of substance in that sample. It is an SI defining constant with an exact value of . It is named after the Italian scientist Amedeo Avogadro by Stanislao Cannizzaro, who explained this number four years after Avogadro's death while at the Karlsruhe Congress in 1860. The numeric value of the Avogadro constant expressed in reciprocal moles, a dimensionless number, is called the Avogadro number. In older literature, the Avogadro number is denoted or , which is the number of particles that are contained in one mole, exactly . The Avogadro number is the approximate number of nucleons (protons or neutrons) in one gram of ordinary matter. The value of the Avogadro constant was chosen so that the mass of one mole of a chemical compound, in grams, is approximately the number of nucleons in one con ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Micrograms
In the metric system, a microgram or microgramme is a unit of mass equal to one millionth () of a gram. The unit symbol is μg according to the International System of Units (SI); the recommended symbol in the United States and United Kingdom when communicating medical information is mcg. In μg the prefix symbol for micro is the Greek letter μ (mu). Abbreviation and symbol confusion When the Greek lowercase "μ" (mu) in the symbol μg is typographically unavailable, it is occasionally – although not properly – replaced by the Latin lowercase "u". The United Statesbased Institute for Safe Medication Practices (ISMP) and the U.S. Food and Drug Administration (FDA) recommend that the symbol μg should not be used when communicating medical information due to the risk that the prefix μ (micro) might be misread as the prefix m (milli), resulting in a thousandfold overdose. The ISMP recommends the non SI symbol mcg instead. However, the abbreviation mcg is also t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Atmospheric Particulate Matter
Particulates – also known as atmospheric aerosol particles, atmospheric particulate matter, particulate matter (PM) or suspended particulate matter (SPM) – are microscopic particles of solid or liquid matter suspended in the air. The term ''aerosol'' commonly refers to the particulate/air mixture, as opposed to the particulate matter alone. Sources of particulate matter can be natural or anthropogenic. They have impacts on climate and precipitation that adversely affect human health, in ways additional to direct inhalation. Types of atmospheric particles include suspended particulate matter; thoracic and respirable particles; inhalable coarse particles, designated PM, which are coarse particles with a diameter of 10 micrometers (μm) or less; fine particles, designated PM, with a diameter of 2.5 μm or less; ultrafine particles, with a diameter of 100 nm or less; and soot. The IARC and WHO designate airborne particulates as a Group 1 carcinogen. Particulates ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Air Pollution
Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. There are many different types of air pollutants, such as gases (including ammonia, carbon monoxide, sulfur dioxide, nitrous oxides, methane, carbon dioxide and chlorofluorocarbons), particulates (both organic and inorganic), and biological molecules. Air pollution can cause diseases, allergies, and even death to humans; it can also cause harm to other living organisms such as animals and food crops, and may damage the natural environment (for example, climate change, ozone depletion or habitat degradation) or built environment (for example, acid rain). Air pollution can be caused by both human activities and natural phenomena. Air pollution is a significant risk factor for a number of pollutionrelated diseases, including respiratory infections, heart disease, C ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Coherent State
In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state which has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. The quantum harmonic oscillator (and hence the coherent states) arise in the quantum theory of a wide range of physical systems.J.R. Klauder and B. Skagerstam, ''Coherent States'', World Scientific, Singapore, 1985. For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well (for an early reference, see e.g. Schiff's textbook). The coherent state describes a state in a system for which the groundstate wavepacket is displaced from the origin of the system. This state can be ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Fock State
In quantum mechanics, a Fock state or number state is a quantum state that is an element of a Fock space with a welldefined number of particles (or quanta). These states are named after the Soviet physicist Vladimir Fock. Fock states play an important role in the second quantization formulation of quantum mechanics. The particle representation was first treated in detail by Paul Dirac for bosons and by Pascual Jordan and Eugene Wigner for fermions. The Fock states of bosons and fermions obey useful relations with respect to the Fock space creation and annihilation operators. Definition One specifies a multiparticle state of N noninteracting identical particles by writing the state as a sum of tensor products of N oneparticle states. Additionally, depending on the integrality of the particles' spin, the tensor products must be alternating (antisymmetric) or symmetric products of the underlying oneparticle Hilbert space. Specifically: * Fermions, having halfinteger spin ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also publishes Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. Being p ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Observable
In physics, an observable is a physical quantity that can be measured. Examples include position and momentum. In systems governed by classical mechanics, it is a realvalued "function" on the set of all possible system states. In quantum physics, it is an operator, or gauge, where the property of the quantum state can be determined by some sequence of operations. For example, these operations might involve submitting the system to various electromagnetic fields and eventually reading a value. Physically meaningful observables must also satisfy transformation laws that relate observations performed by different observers in different frames of reference. These transformation laws are automorphisms of the state space, that is bijective transformations that preserve certain mathematical properties of the space in question. Quantum mechanics In quantum physics, observables manifest as linear operators on a Hilbert space representing the state space of quantum states. The ei ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Particle Number Operator
In quantum mechanics, for systems where the total number of particles may not be preserved, the number operator is the observable that counts the number of particles. The number operator acts on Fock space. Let :, \Psi\rangle_\nu=, \phi_1,\phi_2,\cdots,\phi_n\rangle_\nu be a Fock state, composed of singleparticle states , \phi_i\rangle drawn from a basis of the underlying Hilbert space of the Fock space. Given the corresponding creation and annihilation operators a^(\phi_i) and a(\phi_i)\, we define the number operator by :\hat \ \stackrel\ a^(\phi_i)a(\phi_i) and we have :\hat, \Psi\rangle_\nu=N_i, \Psi\rangle_\nu where N_i is the number of particles in state , \phi_i\rangle. The above equality can be proven by noting that :\begin a(\phi_i) , \phi_1,\phi_2,\cdots,\phi_,\phi_i,\phi_,\cdots,\phi_n\rangle_\nu &=& \sqrt , \phi_1,\phi_2,\cdots,\phi_,\phi_,\cdots,\phi_n\rangle_\nu \\ a^(\phi_i) , \phi_1,\phi_2,\cdots,\phi_,\phi_,\cdots,\phi_n\rangle_\nu &=& \sqrt , \phi_1,\phi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Quantum Mechanical
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to how ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 