Probabilistic Analysis Of Algorithms
In analysis of algorithms, probabilistic analysis of algorithms is an approach to estimate the computational complexity of an algorithm or a computational problem. It starts from an assumption about a probabilistic distribution of the set of all possible inputs. This assumption is then used to design an efficient algorithm or to derive the complexity of a known algorithm. This approach is not the same as that of probabilistic algorithms, but the two may be combined. For non-probabilistic, more specifically deterministic, algorithms, the most common types of complexity estimates are the average-case complexity and the almost-always complexity. To obtain the average-case complexity, given an input distribution, the expected time of an algorithm is evaluated, whereas for the almost-always complexity estimate, it is evaluated that the algorithm admits a given complexity estimate that almost surely holds. In probabilistic analysis of probabilistic (randomized) algorithms, the distributi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analysis Of Algorithms
In computer science, the analysis of algorithms is the process of finding the computational complexity of algorithms—the amount of time, storage, or other resources needed to execute them. Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes (its time complexity) or the number of storage locations it uses (its space complexity). An algorithm is said to be efficient when this function's values are small, or grow slowly compared to a growth in the size of the input. Different inputs of the same size may cause the algorithm to have different behavior, so best, worst and average case descriptions might all be of practical interest. When not otherwise specified, the function describing the performance of an algorithm is usually an upper bound, determined from the worst case inputs to the algorithm. The term "analysis of algorithms" was coined by Donald Knuth. Algorithm analysis is an important part of a broa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probabilistic Algorithm
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are random variables. There is a distinction between algorithms that use the random input so that they always terminate with the correct answer, but where the expected running time is finite (Las Vegas algorithms, for example Quicksort), and algorithms which have a chance of producing an incorrect result ( Monte Carlo algorithms, for example the Monte Carlo algorithm for the MFAS problem) or fail to produce a result either by signaling a failure or failing to terminate. In some cases, probabilistic algorithms are the only practical means of solving a problem. In common practice, randomized alg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deterministic Algorithm
In computer science, a deterministic algorithm is an algorithm that, given a particular input, will always produce the same output, with the underlying machine always passing through the same sequence of states. Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they can be run on real machines efficiently. Formally, a deterministic algorithm computes a mathematical function; a function has a unique value for any input in its domain, and the algorithm is a process that produces this particular value as output. Formal definition Deterministic algorithms can be defined in terms of a state machine: a ''state'' describes what a machine is doing at a particular instant in time. State machines pass in a discrete manner from one state to another. Just after we enter the input, the machine is in its ''initial state'' or ''start state''. If the machine is deterministic, this means that from this point onwar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Average-case Complexity
In computational complexity theory, the average-case complexity of an algorithm is the amount of some computational resource (typically time) used by the algorithm, averaged over all possible inputs. It is frequently contrasted with worst-case complexity which considers the maximal complexity of the algorithm over all possible inputs. There are three primary motivations for studying average-case complexity. First, although some problems may be intractable in the worst-case, the inputs which elicit this behavior may rarely occur in practice, so the average-case complexity may be a more accurate measure of an algorithm's performance. Second, average-case complexity analysis provides tools and techniques to generate hard instances of problems which can be utilized in areas such as cryptography and derandomization. Third, average-case complexity allows discriminating the most efficient algorithm in practice among algorithms of equivalent best case complexity (for instance Quicksort#For ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Almost Surely
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (with respect to the probability measure). In other words, the set of outcomes on which the event does not occur has probability 0, even though the set might not be empty. The concept is analogous to the concept of "almost everywhere" in measure theory. In probability experiments on a finite sample space with a non-zero probability for each outcome, there is no difference between ''almost surely'' and ''surely'' (since having a probability of 1 entails including all the sample points); however, this distinction becomes important when the sample space is an infinite set, because an infinite set can have non-empty subsets of probability 0. Some examples of the use of this concept include the strong and uniform versions of the law of large numbers, the continuity of the paths of Brownian motion, and the infinite monkey theorem. The terms almost certai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Amortized Analysis
In computer science, amortized analysis is a method for analyzing a given algorithm's complexity, or how much of a resource, especially time or memory, it takes to execute. The motivation for amortized analysis is that looking at the worst-case run time can be too pessimistic. Instead, amortized analysis averages the running times of operations in a sequence over that sequence. As a conclusion: "Amortized analysis is a useful tool that complements other techniques such as worst-case and average-case analysis." For a given operation of an algorithm, certain situations (e.g., input parametrizations or data structure contents) may imply a significant cost in resources, whereas other situations may not be as costly. The amortized analysis considers both the costly and less costly operations together over the whole sequence of operations. This may include accounting for different types of input, length of the input, and other factors that affect its performance. History Amortize ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Average-case Complexity
In computational complexity theory, the average-case complexity of an algorithm is the amount of some computational resource (typically time) used by the algorithm, averaged over all possible inputs. It is frequently contrasted with worst-case complexity which considers the maximal complexity of the algorithm over all possible inputs. There are three primary motivations for studying average-case complexity. First, although some problems may be intractable in the worst-case, the inputs which elicit this behavior may rarely occur in practice, so the average-case complexity may be a more accurate measure of an algorithm's performance. Second, average-case complexity analysis provides tools and techniques to generate hard instances of problems which can be utilized in areas such as cryptography and derandomization. Third, average-case complexity allows discriminating the most efficient algorithm in practice among algorithms of equivalent best case complexity (for instance Quicksort#For ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Best, Worst And Average Case
In computer science, best, worst, and average cases of a given algorithm express what the resource usage is ''at least'', ''at most'' and ''on average'', respectively. Usually the resource being considered is running time, i.e. time complexity, but could also be memory or some other resource. Best case is the function which performs the minimum number of steps on input data of n elements. Worst case is the function which performs the maximum number of steps on input data of size n. Average case is the function which performs an average number of steps on input data of n elements. In real-time computing, the worst-case execution time is often of particular concern since it is important to know how much time might be needed ''in the worst case'' to guarantee that the algorithm will always finish on time. Average performance and worst-case performance are the most used in algorithm analysis. Less widely found is best-case performance, but it does have uses: for example, where th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Random Self-reducibility
Random self-reducibility (RSR) is the rule that a good algorithm for the average case implies a good algorithm for the worst case. RSR is the ability to solve all instances of a problem by solving a large fraction of the instances. Definition If for a function ''f'' evaluating any instance ''x'' can be reduced in polynomial time to the evaluation of ''f'' on one or more random instances ''yi'', then it is self-reducible (this is also known as a ''non-adaptive uniform self-reduction''). In a random self-reduction, an arbitrary worst-case instance ''x'' in the domain of ''f'' is mapped to a random set of instances ''y''1, ..., ''yk''. This is done so that ''f''(''x'') can be computed in polynomial time, given the coin-toss sequence from the mapping, ''x'', and ''f''(''y''1), ..., ''f''(''yk''). Therefore, taking the average with respect to the induced distribution on ''yi'', the average-case complexity of ''f'' is the same (within polynomial factors) as the worst-case randomized c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Principle Of Deferred Decision
Principle of deferred decisions is a technique used in analysis of randomized algorithms. Definition A randomized algorithm makes a set of random choices. These random In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. ... choices may be intricately related making it difficult to analyze it. In many of these cases ''Principle of Deferred Decisions'' is used. The idea behind the principle is that the entire set of random choices are not made in advance, but rather fixed only as they are revealed to the algorithm. Applications The Clock Solitaire Game The principle is used to evaluate and determine the probability of "win" from a deck of cards. The idea is to let the random choices unfold, until the iteration ends at 52, where if the fourth card is drawn out of a group labeled " ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |