HOME





Order Complex
In mathematics, the poset topology associated to a poset (''S'', ≤) is the Alexandrov topology (open sets are upper sets) on the poset of finite chains of (''S'', ≤), ordered by inclusion. Let ''V'' be a set of vertices. An abstract simplicial complex Δ is a set of finite sets of vertices, known as faces \sigma \subseteq V, such that ::\forall \rho \, \forall \sigma \!: \ \rho \subseteq \sigma \in \Delta \Rightarrow \rho \in \Delta. Given a simplicial complex Δ as above, we define a (point set) topology on Δ by declaring a subset \Gamma \subseteq \Delta be closed if and only if Γ is a simplicial complex, i.e. ::\forall \rho \, \forall \sigma \!: \ \rho \subseteq \sigma \in \Gamma \Rightarrow \rho \in \Gamma. This is the Alexandrov topology In general topology, an Alexandrov topology is a topology in which the intersection of an ''arbitrary'' family of open sets is open (while the definition of a topology only requires this for a ''finite'' family). Equivalently, an Ale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poset
In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable. Formally, a partial order is a homogeneous binary relation that is Reflexive relation, reflexive, antisymmetric relation, antisymmetric, and Transitive relation, transitive. A partially ordered set (poset for short) is an ordered pair P=(X,\leq) consisting of a set X (called the ''ground set'' of P) and a partial order \leq on X. When the meaning is clear from context and there is no ambiguity about the partial order, the set X itself is sometimes called a poset. Partial order relations The term ''partial order'' usually refers to the reflexive partial order relatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexandrov Topology
In general topology, an Alexandrov topology is a topology in which the intersection of an ''arbitrary'' family of open sets is open (while the definition of a topology only requires this for a ''finite'' family). Equivalently, an Alexandrov topology is one whose open sets are the upper sets for some preorder on the space. Spaces with an Alexandrov topology are also known as Alexandrov-discrete spaces or finitely generated spaces. The latter name stems from the fact that their topology is uniquely determined by the family of all finite subspaces. This makes them a generalization of finite topological spaces. Alexandrov-discrete spaces are named after the Russian topologist Pavel Alexandrov. They should not be confused with Alexandrov spaces from Riemannian geometry introduced by the Russian mathematician Aleksandr Danilovich Aleksandrov. Characterizations of Alexandrov topologies Alexandrov topologies have numerous characterizations. In a topological space X, the followi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Upper Set
In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in ''X'') of a partially ordered set (X, \leq) is a subset S \subseteq X with the following property: if ''s'' is in ''S'' and if ''x'' in ''X'' is larger than ''s'' (that is, if s < x), then ''x'' is in ''S''. In other words, this means that any ''x'' element of ''X'' that is \,\geq\, to some element of ''S'' is necessarily also an element of ''S''. The term lower set (also called a downward closed set, down set, decreasing set, initial segment, or semi-ideal) is defined similarly as being a subset ''S'' of ''X'' with the property that any element ''x'' of ''X'' that is \,\leq\, to some element of ''S'' is necessarily also an element of ''S''.


Definition

Let (X, \leq) be a preordered set. An in X (also called an , an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Order
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a ( strongly connected, formerly called totality). Requirements 1. to 3. just make up the definition of a partial order. Reflexivity (1.) already follows from strong connectedness (4.), but is required explicitly by many authors nevertheless, to indicate the kinship to partial orders. Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, toset and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but generally refers to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abstract Simplicial Complex
In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. Lee, John M., Introduction to Topological Manifolds, Springer 2011, , p153 For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles (sets of size 3), their edges (sets of size 2), and their vertices (sets of size 1). In the context of matroids and greedoids, abstract simplicial complexes are also called independence systems. An abstract simplex can be studied algebraically by forming its Stanley–Reisner ring; this sets up a powerful relation between combinatorics and commutative algebra. Definitions A collection of non-empty finite subsets of a set ''S'' is called a set-family. A set-family is called an abstract simplicial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Combinatorics
The mathematical discipline of topological combinatorics is the application of topological and algebro-topological methods to solving problems in combinatorics. History The discipline of combinatorial topology used combinatorial concepts in topology and in the early 20th century this turned into the field of algebraic topology. In 1978 the situation was reversed—methods from algebraic topology were used to solve a problem in combinatorics—when László Lovász proved the Kneser conjecture, thus beginning the new field of topological combinatorics. Lovász's proof used the Borsuk–Ulam theorem and this theorem retains a prominent role in this new field. This theorem has many equivalent versions and analogs and has been used in the study of fair division problems. In another application of homological methods to graph theory, Lovász proved both the undirected and directed versions of a conjecture of András Frank: Given a ''k''-connected graph ''G'', ''k'' points v_1,\l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michelle L
Michelle may refer to: People *Michelle (name), a given name and surname, the feminine form of Michael * Michelle Courtens, Dutch singer, performing as "Michelle" * Michelle (German singer) * Michelle (Scottish singer) (born 1980), Scottish winner of ''Pop Idol'' in 2003 * Michel'le, American singer * Michelle (band), American band Arts, entertainment, and media Music * ''Michelle'' (album), a 1966 album by saxophonist Bud Shank * "Michelle" (song), a 1965 song by The Beatles * "Michèle" (song) by French singer Gérard Lenorman *"Michelle", a 2013 song by Beatallica from '' Abbey Load'' *"Michelle", a song from the Lynyrd Skynyrd compilation album '' Collectybles'' *" My Michelle", a 1987 song by Guns N' Roses *" A World Without You (Michelle)", a 1988 song by Bad Boys Blue Film * Michelle (Marvel Cinematic Universe), a fictional character of the Marvel Cinematic Universe Television * "Michelle" (''Skins'' series 1), a 2007 episode of the British teen drama ''Skins'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Topology
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are ''continuity'', ''compactness'', and ''connectedness'': * Continuous functions, intuitively, take nearby points to nearby points. * Compact sets are those that can be covered by finitely many sets of arbitrarily small size. * Connected sets are sets that cannot be divided into two pieces that are far apart. The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a ''topology''. A set with a topology is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]