HOME





One-loop
In physics, a one-loop Feynman diagram is a connected Feynman diagram with only one cycle ( unicyclic). Such a diagram can be obtained from a connected tree diagram by taking two external lines of the same type and joining them together into an edge. Diagrams with loops (in graph theory, these kinds of loops are called cycles, while the word loop is an edge connecting a vertex with itself) correspond to the quantum corrections to the classical field theory. Because one-loop diagrams only contain one cycle, they express the next-to-classical contributions called the '' semiclassical contributions''. One-loop diagrams are usually computed as the integral over one independent momentum that can "run in the cycle". The Casimir effect, Hawking radiation and Lamb shift are examples of phenomena whose existence can be implied using one-loop Feynman diagrams, especially the well-known "triangle diagram": :: The evaluation of one-loop Feynman diagrams usually leads to divergent expre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Renormalization
Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that is used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian. For example, an electron theory may begin by postulating an electron with an initial mass and charge. In quantum field theory a cloud of virtual particles, such as photons, positrons, and others surrounds and interacts with the initial electron. Accounting for the interactions of the surrounding particles (e.g. collisions at different energies) shows that the electron-system behaves as if it had a different mass and charge than initially postulated. Renormalization, in this example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inabili ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Lamb Shift
In physics, the Lamb shift, named after Willis Lamb, is an anomalous difference in energy between two electron orbitals in a hydrogen atom. The difference was not predicted by theory and it cannot be derived from the Dirac equation, which predicts identical energies. Hence the Lamb ''shift'' is a deviation from theory seen in the differing energies contained by the 2''S''1/2 and 2''P''1/2 orbitals of the hydrogen atom. The Lamb shift is caused by interactions between the virtual photons created through vacuum energy fluctuations and the electron as it moves around the hydrogen nucleus in each of these two orbitals. The Lamb shift has since played a significant role through vacuum energy fluctuations in theoretical prediction of Hawking radiation from black holes. This effect was first measured in 1947 in the Lamb–Retherford experiment on the hydrogen microwave spectrum and this measurement provided the stimulus for renormalization theory to handle the divergences. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Furry's Theorem
In quantum electrodynamics, Furry's theorem states that if a Feynman diagram consists of a closed loop of fermion lines with an odd number of vertices, its contribution to the amplitude vanishes. As a corollary, a single photon cannot arise from the vacuum or be absorbed by it. The theorem was first derived by Wendell H. Furry in 1937, as a direct consequence of the conservation of energy and charge conjugation symmetry. Theory Quantum electrodynamics has a number of symmetries, one of them being the discrete symmetry of charge conjugation. This acts on fields through a unitary charge conjugation operator C which anticommutes with the photon field A_\mu(x) as CA^\mu(x) C^\dagger = -A^\mu(x), while leaving the vacuum state invariant C, \Omega\rangle = , \Omega\rangle. Considering the simplest case of the correlation function of a single photon operator gives : \langle \Omega, A^\mu(x), \Omega\rangle = \langle \Omega, C^\dagger C A^\mu(x) C^\dagger C, \Omega\rangle = - \langle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Tadpole (physics)
In quantum field theory, a tadpole is a one-loop Feynman diagram with one external leg, giving a contribution to a one-point correlation function (i.e., the field's vacuum expectation value). One-loop diagrams with a propagator that connects back to its originating vertex are often also referred as tadpoles. For many massless theories, these graphs vanish in dimensional regularization (by dimensional analysis and the absence of any inherent mass scale in the loop integral). Tadpole corrections are needed if the corresponding external field has a non-zero vacuum expectation value, such as the Higgs field. Tadpole diagrams were first used in the 1960s. An early example was published by Abdus Salam in 1961, though he did not take credit for the name. Physicists Sidney Coleman and Sheldon Glashow made an influential use of tadpole diagrams to explain symmetry breaking In physics, symmetry breaking is a phenomenon where a disordered but Symmetry in quantum mechanics, symmetric s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Semiclassical Physics
In physics, semiclassical refers to a theory in which one part of a system is described quantum mechanically, whereas the other is treated classically. For example, external fields will be constant, or when changing will be classically described. In general, it incorporates a development in powers of the Planck constant, resulting in the classical physics of power 0, and the first nontrivial approximation to the power of (−1). In this case, there is a clear link between the quantum-mechanical system and the associated semi-classical and classical approximations, as it is similar in appearance to the transition from physical optics to geometric optics. History Max Planck was the first to introduce the idea of quanta of energy in 1900 while studying black-body radiation. In 1906, he was also the first to write that quantum theory should replicate classical mechanics at some limit, particularly if the Planck constant ''h'' were infinitesimal. With this idea he showed tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Ultraviolet Divergence
In physics, an ultraviolet divergence or UV divergence is a situation in which an integral, for example a Feynman diagram, diverges because of contributions of objects with unbounded energy, or, equivalently, because of physical phenomena at infinitesimal distances. Overview Since an infinite result is unphysical, ultraviolet divergences often require special treatment to remove unphysical effects inherent in the perturbative formalisms. In particular, UV divergences can often be removed by regularization and renormalization. Successful resolution of an ultraviolet divergence is known as ultraviolet completion. If they cannot be removed, they imply that the theory is not perturbatively well-defined at very short distances. The name comes from the earliest example of such a divergence, the "ultraviolet catastrophe" first encountered in understanding blackbody radiation. According to classical physics at the end of the nineteenth century, the quantity of radiation in the form of l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Infrared Divergence
In physics, an infrared divergence (also IR divergence or infrared catastrophe) is a situation in which an integral, for example a Feynman diagram, diverges because of contributions of objects with very small energy approaching zero, or equivalently, because of physical phenomena at very long distances. Overview The infrared divergence only appears in theories with massless particles (such as photons). They represent a legitimate effect that a complete theory often implies. In fact, in the case of photons, the energy is given by E=h\nu, where \nu is the frequency associated to the particle and as it goes to zero, like in the case of soft photons, there will be an infinite number of particles in order to have a finite amount of energy. One way to deal with it is to impose an infrared cutoff and take the limit as the cutoff approaches zero and/or refine the question. Another way is to assign the massless particle a fictitious mass, and then take the limit as the fictitious mass va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Triangle Diagram
A ternary plot, ternary graph, triangle plot, simplex plot, or Gibbs triangle is a barycentric plot on three variables which sum to a constant. It graphically depicts the ratios of the three variables as positions in an equilateral triangle. It is used in physical chemistry, petrology, mineralogy, metallurgy, and other physical sciences to show the compositions of systems composed of three species. Ternary plots are tools for analyzing compositional data in the three-dimensional case. In population genetics, a triangle plot of genotype frequencies is called a de Finetti diagram. In game theory and convex optimization,Boyd, S. and Vandenberghe, L., 2004. Convex optimization. Cambridge university press. it is often called a simplex plot. In a ternary plot, the values of the three variables , , and must sum to some constant, . Usually, this constant is represented as 1.0 or 100%. Because for all substances being graphed, any one variable is not independent of the others, so o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." It is one of the most fundamental scientific disciplines. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physics. (...) You will come to see physics as a towering achievement of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Connected Component (graph Theory)
In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components. The number of components in a given graph is an important graph invariant, and is closely related to invariants of matroids, topological spaces, and matrices. In random graphs, a frequently occurring phenomenon is the incidence of a giant component, one component that is significantly larger than the others; and of a percolation threshold, an edge probability above which a giant component exists and below which it does not. The components of a graph can be constructed in linear time, and a special case of the problem, connected-component labeling, is a basic technique in image analysis. Dy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Casimir Effect
In quantum field theory, the Casimir effect (or Casimir force) is a physical force (physics), force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of a field (physics), field. The term Casimir pressure is sometimes used when it is described in units of force per unit area. It is named after the Dutch physicist Hendrik Casimir, who predicted the effect for electromagnetism, electromagnetic systems in 1948. In the same year Casimir, together with Dirk Polder, described a similar effect experienced by a neutral atom in the vicinity of a macroscopic interface which is called the Casimir–Polder force. Their result is a generalization of the London dispersion force, London–van der Waals force and includes retarded potential, retardation due to the finite speed of light. The fundamental principles leading to the London–van der Waals force, the Casimir force, and the Casimir–Polder force can be formulated on the same footing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]