Octal Games
Octal games are a subclass of heap games that involve removing tokens (game pieces or stones) from heaps of tokens. They have been studied in combinatorial game theory as a generalization of Nim, Kayles, and similar games. Revised and reprinted as Octal games are impartial meaning that every move available to one player is also available to the other player. They differ from each other in the numbers of tokens that may be removed in a single move, and (depending on this number) whether it is allowed to remove an entire heap, reduce the size of a heap, or split a heap into two heaps. These rule variations may be described compactly by a coding system using octal numerals. Game specification An octal game is played with tokens divided into heaps. Two players take turns moving until no moves are possible. Every move consists of selecting just one of the heaps, and either * removing all of the tokens in the heap, leaving no heap, * removing some but not all of the tokens, lea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subclass (set Theory)
In set theory and its applications throughout mathematics, a subclass is a class contained in some other class in the same way that a subset is a set contained in some other set. One may also call this "inclusion of classes". That is, given classes ''A'' and ''B'', ''A'' is a subclass of ''B'' if and only if every member of ''A'' is also a member of ''B''. In fact, when using a definition of classes that requires them to be first-order definable, it is enough that ''B'' be a set; the axiom of specification essentially says that ''A'' must then also be a set. As with subsets, the empty set is a subclass of every class, and any class is a subclass of itself. But additionally, every class is a subclass of the class of all sets. Accordingly, the subclass relation makes the collection of all classes into a Boolean lattice In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Repeating Decimal
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be ''terminating'', and is not considered as repeating. It can be shown that a number is rational if and only if its decimal representation is repeating or terminating. For example, the decimal representation of becomes periodic just after the decimal point, repeating the single digit "3" forever, i.e. 0.333.... A more complicated example is , whose decimal becomes periodic at the ''second'' digit following the decimal point and then repeats the sequence "144" forever, i.e. 5.8144144144.... Another example of this is , which becomes periodic after the decimal point, repeating the 13-digit pattern "1886792452830" forever, i.e. 11.18867924528301886792452830.... ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Richard K
Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic language">Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong in rule'. Nicknames include "Richie", " Dick", " Dickon", " Dickie", " Rich", " Rick", "Rico (name), Rico", " Ricky", and more. Richard is a common English (the name was introduced into England by the Normans), German and French male name. It's also used in many more languages, particularly Germanic, such as Norwegian, Danish, Swedish, Icelandic, and Dutch, as well as other languages including Irish, Scottish, Welsh and Finnish. Richard is cognate with variants of the name in other European languages, such as the Swedish "Rickard", the Portuguese and Spanish "Ricardo" and the Italian "Riccardo" (see comprehensive variant list below). People named Richard Multiple people with the same name * Richard Anders ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sprague–Grundy Theorem
In combinatorial game theory, the Sprague–Grundy theorem states that every impartial game under the normal play convention is equivalent to a one-heap game of nim, or to an infinite generalization of nim. It can therefore be represented as a natural number, the size of the heap in its equivalent game of nim, as an ordinal number in the infinite generalization, or alternatively as a nimber, the value of that one-heap game in an algebraic system whose addition operation combines multiple heaps to form a single equivalent heap in nim. The Grundy value or nim-value of any impartial game is the unique nimber that the game is equivalent to. In the case of a game whose positions are indexed by the natural numbers (like nim itself, which is indexed by its heap sizes), the sequence of nimbers for successive positions of the game is called the nim-sequence of the game. The Sprague–Grundy theorem and its proof encapsulate the main results of a theory discovered independently b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hexadecimal
Hexadecimal (also known as base-16 or simply hex) is a Numeral system#Positional systems in detail, positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen. Software developers and system designers widely use hexadecimal numbers because they provide a convenient representation of binary code, binary-coded values. Each hexadecimal digit represents four bits (binary digits), also known as a nibble (or nybble). For example, an 8-bit byte is two hexadecimal digits and its value can be written as to in hexadecimal. In mathematics, a subscript is typically used to specify the base. For example, the decimal value would be expressed in hexadecimal as . In programming, several notations denote hexadecimal numbers, usually involving a prefi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quaternary Numeral System
Quaternary is a numeral system with four as its base. It uses the digits 0, 1, 2, and 3 to represent any real number. Conversion from binary is straightforward. Four is the largest number within the subitizing range and one of two numbers that is both a square and a highly composite number (the other being thirty-six), making quaternary a convenient choice for a base at this scale. Despite being twice as large, its radix economy is equal to that of binary. However, it fares no better in the localization of prime numbers (the smallest better base being the primorial base six, senary). Quaternary shares with all fixed-radix numeral systems many properties, such as the ability to represent any real number with a canonical representation (almost unique) and the characteristics of the representations of rational numbers and irrational numbers. See decimal and binary for a discussion of these properties. Relation to other positional number systems Relation to binary and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thomas Rayner Dawson
Thomas Rayner Dawson (28 November 1889 – 16 December 1951) was an English chess problemist and is acknowledged as "the father of Fairy Chess". He invented many fairy pieces and new conditions. He introduced the popular fairy pieces grasshopper, nightrider, and many other fairy chess ideas. Career Dawson published his first problem, a two-mover, in 1907. His chess problem compositions include 5,320 fairies, 885 , 97 selfmates, and 138 endings. 120 of his problems have been awarded prizes and 211 honourably mentioned or otherwise commended. He cooperated in chess composition with Charles Masson Fox. Dawson was founder-editor (1922–1931) of '' The Problemist'', the journal of the British Chess Problem Society. He subsequently produced ''The Fairy Chess Review'' (1930–1951), which began as ''The Problemist Fairy Chess Supplement''. At the same time he edited the problem pages of '' The British Chess Magazine'' (1931–1951). Motivation and personality From ''The Oxfor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hexapawn
Hexapawn is a deterministic two-player game invented by Martin Gardner. It is played on a rectangular board of variable size, for example on a 3×3 board or on a regular chessboard. On a board of size ''n''×''m'', each player begins with ''m'' pawns, one for each square in the row closest to them. The goal of each player is to either advance a pawn to the opposite end of the board or leave the other player with no legal moves, either by stalemate or by having all of their pieces captured. Hexapawn on the 3×3 board is a solved game; with perfect play, White will always lose in 3 moves (1.b2 axb2 2.cxb2 c2 3.a2 c1#). Indeed, Gardner specifically constructed it as a game with a small game tree in order to demonstrate how it could be played by a heuristic AI implemented by a mechanical computer based on Donald Michie's Matchbox Educable Noughts and Crosses Engine (MENACE). A variant of this game is octopawn, which is played on a 4×4 board with 4 pawns on each side. It is a for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Grundy's Game
Grundy's game is a two-player mathematical game of strategy. The starting configuration is a single heap of objects, and the two players take turn splitting a single heap into two heaps of different sizes. The game ends when only heaps of size two and smaller remain, none of which can be split unequally. The game is usually played as a ''misère game, normal play'' game, which means that the last person who can make an allowed move wins. Illustration A normal play game starting with a single heap of 8 is a win for the first player provided they start by splitting the heap into heaps of 7 and 1: player 1: 8 → 7+1 Player 2 now has three choices: splitting the 7-heap into 6 + 1, 5 + 2, or 4 + 3. In each of these cases, player 1 can ensure that on the next move he hands back to his opponent a heap of size 4 plus heaps of size 2 and smaller: player 2: 7+1 → 6+1+1 player 2: 7+1 → 5+2+1 player 2: 7+1 → 4+3+1 player 1: 6+1+1 → 4+2+1+1 player 1: 5+2+ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Heap Game
In combinatorial game theory, an impartial game is a game in which the allowable moves depend only on the position and not on which of the two players is currently moving, and where the payoffs are symmetric. In other words, the only difference between player 1 and player 2 is that player 1 goes first. The game is played until a terminal position is reached. A terminal position is one from which no moves are possible. Then one of the players is declared the winner and the other the loser. Furthermore, impartial games are played with perfect information and no chance moves, meaning all information about the game and operations for both players are visible to both players. Impartial games include Nim, Sprouts, Kayles, Quarto, Cram, Chomp, Subtract a square, Notakto, and poset games. Go and chess are not impartial, as each player can only place or move pieces of their own color. Games such as poker, dice or dominos are not impartial games as they rely on chance. Impartial games ca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Misère Game
Misère (French for "destitution"), misere, nullo, bettel, betl, or (German for "beggar"; equivalent terms in other languages include , and ) is a bid in various card games, and the player who bids misère undertakes to win no tricks or as few as possible, usually at no trump, in the round to be played. This does not allow sufficient variety to constitute a game in its own right, but it is the basis of such trick-avoidance games as Hearts, and provides an optional contract for most games involving an auction. The term or category may also be used for some card game of its own with the same aim, like Black Peter. A misère bid usually indicates an extremely poor hand, hence the name. An open or lay down misère, or misère ouvert is a 500 bid where the player is so sure of losing every trick that they undertake to do so with their cards placed face-up on the table. Consequently, 'lay down misère' is Australian gambling slang for a predicted easy victory. In Skat, the b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Octal
Octal (base 8) is a numeral system with eight as the base. In the decimal system, each place is a power of ten. For example: : \mathbf_ = \mathbf \times 10^1 + \mathbf \times 10^0 In the octal system, each place is a power of eight. For example: : \mathbf_8 = \mathbf \times 8^2 + \mathbf \times 8^1 + \mathbf \times 8^0 By performing the calculation above in the familiar decimal system, we see why 112 in octal is equal to 64+8+2=74 in decimal. Octal numerals can be easily converted from binary representations (similar to a quaternary numeral system) by grouping consecutive binary digits into groups of three (starting from the right, for integers). For example, the binary representation for decimal 74 is 1001010. Two zeroes can be added at the left: , corresponding to the octal digits , yielding the octal representation 112. Usage In China The eight bagua or trigrams of the I Ching correspond to octal digits: * 0 = ☷, 1 = ☳, 2 = ☵, 3 = ☱, * 4 = ☶, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |