HOME
*





Non-associative Ring
A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure ''A'' is a non-associative algebra over a field ''K'' if it is a vector space over ''K'' and is equipped with a ''K''- bilinear binary multiplication operation ''A'' × ''A'' → ''A'' which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (''ab'')(''cd''), (''a''(''bc''))''d'' and ''a''(''b''(''cd'')) may all yield different answers. While this use of ''non-associative'' means that associativity is not assumed, it does not mean that associativity is disallowed. In other words, "non-associative" means "not n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the modu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nil Algebra
In mathematics, specifically in ring theory, a nilpotent algebra over a commutative ring is an algebra over a commutative ring, in which for some positive integer ''n'' every product containing at least ''n'' elements of the algebra is zero. The concept of a nilpotent Lie algebra_has_a_different_definition,_which_depends_upon_the_Lie_bracket.html" ;"title="mathfrak,\mathfrak ... has a different definition, which depends upon the Lie bracket">mathfrak,\mathfrak ... has a different definition, which depends upon the Lie bracket. (There is no Lie bracket for many algebras over commutative rings; a Lie algebra involves its Lie bracket, whereas, there is no Lie bracket defined in the general case of an algebra over a commutative ring.) Another possible source of confusion in terminology is the ''quantum nilpotent algebra'', a concept related to quantum groups and Hopf algebras. Formal definition An associative algebra A over a commutative ring R is defined to be a nilpotent algebra if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilpotent Algebra
In mathematics, specifically in ring theory, a nilpotent algebra over a commutative ring is an algebra over a commutative ring, in which for some positive integer ''n'' every product containing at least ''n'' elements of the algebra is zero. The concept of a nilpotent Lie algebra_has_a_different_definition,_which_depends_upon_the_Lie_bracket.html" ;"title="mathfrak,\mathfrak ... has a different definition, which depends upon the Lie bracket">mathfrak,\mathfrak ... has a different definition, which depends upon the Lie bracket. (There is no Lie bracket for many algebras over commutative rings; a Lie algebra involves its Lie bracket, whereas, there is no Lie bracket defined in the general case of an algebra over a commutative ring.) Another possible source of confusion in terminology is the ''quantum nilpotent algebra'', a concept related to quantum groups and Hopf algebras. Formal definition An associative algebra A over a commutative ring R is defined to be a nilpotent algebra if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Power Associative
In mathematics, specifically in abstract algebra, power associativity is a property of a binary operation that is a weak form of associativity. Definition An algebra (or more generally a magma) is said to be power-associative if the subalgebra generated by any element is associative. Concretely, this means that if an element x is performed an operation * by itself several times, it doesn't matter in which order the operations are carried out, so for instance x*(x*(x*x)) = (x*(x*x))*x = (x*x)*(x*x). Examples and properties Every associative algebra is power-associative, but so are all other alternative algebras (like the octonions, which are non-associative) and even some non-alternative algebras like the sedenions and Okubo algebras. Any algebra whose elements are idempotent is also power-associative. Exponentiation to the power of any positive integer can be defined consistently whenever multiplication is power-associative. For example, there is no need to distinguish whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flexible Algebra
In mathematics, particularly abstract algebra, a binary operation • on a set is flexible if it satisfies the flexible identity: : a \bullet \left(b \bullet a\right) = \left(a \bullet b\right) \bullet a for any two elements ''a'' and ''b'' of the set. A magma (that is, a set equipped with a binary operation) is flexible if the binary operation with which it is equipped is flexible. Similarly, a nonassociative algebra is flexible if its multiplication operator is flexible. Every commutative or associative operation is flexible, so flexibility becomes important for binary operations that are neither commutative nor associative, e.g. for the multiplication of sedenions, which are not even alternative. In 1954, Richard D. Schafer examined the algebras generated by the Cayley–Dickson process over a field and showed that they satisfy the flexible identity.Richard D. Schafer (1954) “On the algebras formed by the Cayley-Dickson process”, American Journal of Mathematics 76: 435– ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alternative Algebra
In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have *x(xy) = (xx)y *(yx)x = y(xx) for all ''x'' and ''y'' in the algebra. Every associative algebra is obviously alternative, but so too are some strictly non-associative algebras such as the octonions. The associator Alternative algebras are so named because they are the algebras for which the associator is alternating. The associator is a trilinear map given by : ,y,z= (xy)z - x(yz). By definition, a multilinear map is alternating if it vanishes whenever two of its arguments are equal. The left and right alternative identities for an algebra are equivalent toSchafer (1995) p. 27 : ,x,y= 0 : ,x,x= 0. Both of these identities together imply that : ,y,x= , x, x+ , y, x- , x+y, x+y= , x+y, -y= , x, -y- , y, y= 0 for all x and y. This is equivalent to the '' flexible identity''Schafer (1995) p. 28 :(xy)x = x(yx). The associator of an alte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jordan Identity
In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms: # xy = yx (commutative law) # (xy)(xx) = x(y(xx)) (). The product of two elements ''x'' and ''y'' in a Jordan algebra is also denoted ''x'' ∘ ''y'', particularly to avoid confusion with the product of a related associative algebra. The axioms imply that a Jordan algebra is power-associative, meaning that x^n = x \cdots x is independent of how we parenthesize this expression. They also imply that x^m (x^n y) = x^n(x^m y) for all positive integers ''m'' and ''n''. Thus, we may equivalently define a Jordan algebra to be a commutative, power-associative algebra such that for any element x, the operations of multiplying by powers x^n all commute. Jordan algebras were first introduced by to formalize the notion of an algebra of observables in quantum mechanics. They were originally called "r-number systems", but were renamed "Jordan algebras" by , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi Identity
In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result (parentheses in a multiple product are not needed). The identity is named after the German mathematician Carl Gustav Jacob Jacobi. The cross product a\times b and the Lie bracket operation ,b/math> both satisfy the Jacobi identity. In analytical mechanics, the Jacobi identity is satisfied by the Poisson brackets. In quantum mechanics, it is satisfied by operator commutators on a Hilbert space and equivalently in the phase space formulation of quantum mechanics by the Moyal bracket. Definition Let + and \times be two binary operations, and let 0 be the neutral element for +. The is :x \times (y \times z) \ +\ y \times (z \times x) \ +\ z \times (x \times y)\ =\ 0. Notic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anticommutative
In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the ''inverse'' of the result with unswapped arguments. The notion '' inverse'' refers to a group structure on the operation's codomain, possibly with another operation. Subtraction is an anticommutative operation because commuting the operands of gives for example, Another prominent example of an anticommutative operation is the Lie bracket. In mathematical physics, where symmetry is of central importance, these operations are mostly called antisymmetric operations, and are extended in an associative setting to cover more than two arguments. Definition If A, B are two abelian groups, a bilinear map f\colon A^2 \to B is anticommutative if for all x, y \in A we have :f(x, y) = - f(y, x). More generally, a multilinear map g : A^n \to B is anticommutative if for all x_1, \d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutativity
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like or , the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, ); such operations are ''not'' commutative, and so are referred to as ''noncommutative operations''. The idea that simple operations, such as the multiplication and addition of numbers, are commutative was for many years implicitly assumed. Thus, this property was not named until the 19th century, when mathematics started to become formalized. A similar property exists for binary relations; a binary relation is said to be symmetric if the relation applies regardless of the order of its operands; for example, equality ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]