HOME
*





No-wandering-domain Theorem
In mathematics, the no-wandering-domain theorem is a result on dynamical systems, proven by Dennis Sullivan in 1985. The theorem states that a rational map ''f'' : Ĉ → Ĉ with deg(''f'') ≥ 2 does not have a wandering domain, where Ĉ denotes the Riemann sphere. More precisely, for every component ''U'' in the Fatou set of ''f'', the sequence :U,f(U),f(f(U)),\dots,f^n(U), \dots will eventually become periodic. Here, ''f'' ''n'' denotes the ''n''-fold iteration of ''f'', that is, :f^n = \underbrace_n . The theorem does not hold for arbitrary maps; for example, the transcendental map f(z)=z+2\pi\sin(z) has wandering domains. However, the result can be generalized to many situations where the functions naturally belong to a finite-dimensional parameter space, most notably to transcendental entire and meromorphic functions with a finite number of singular values. References * Lennart Carleson and Theodore W. Gamelin, ''Complex Dynami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and mathematical analysis, analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of mathematical object, abstract objects and the use of pure reason to proof (mathematics), prove them. These objects consist of either abstraction (mathematics), abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of inference rule, deductive rules to already established results. These results include previously proved theorems, axioms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wandering Domains For The Entire Function F(z)=z+2πsin(z)
Wandering may refer to: * Wandering (dementia) * ''Wandering'', a 2021 EP by JO1 * Wandering, Western Australia, a town located in the Wheatbelt region of Western Australia * Shire of Wandering, a local government area in the Wheatbelt region of Western Australia See also * * * Wander (other) * Wanderer (other) * Jitter * Joyride (crime) * Meander (other) * Vagabond (other) A vagabond is a person who wanders from place to place without a permanent home or regular work. (The) Vagabond or Vagabondage may also refer to: Literature * ''Vagabond'' (novel), second book in ''The Grail Quest'' series of Bernard Cornwell ... * Vagrant (other) {{Disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Limit Sets
Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 song by Paenda; see Austria in the Eurovision Song Contest 2019 * ''Limits'' (collection), a collection of short stories and essays by Larry Niven * The Limit, a Dutch band *The Limit, an episode from ''The Amazing World of Gumball'' Mathematics * Limit (mathematics), the value that a function or sequence "approaches" as the input or index approaches some value ** Limit of a function ***(ε,_δ)-definition of limit, formal definition of the mathematical notion of limit ** Limit of a sequence ** One-sided limit, either of the two limits of a function as a specified point is approached from below or from above * Limit of a net * Limit point, in topological spaces * Limit (category theory) ** Direct limit ** Inverse limit Other uses * Limit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ergodic Theory
Ergodic theory ( Greek: ' "work", ' "way") is a branch of mathematics that studies statistical properties of deterministic dynamical systems; it is the study of ergodicity. In this context, statistical properties means properties which are expressed through the behavior of time averages of various functions along trajectories of dynamical systems. The notion of deterministic dynamical systems assumes that the equations determining the dynamics do not contain any random perturbations, noise, etc. Thus, the statistics with which we are concerned are properties of the dynamics. Ergodic theory, like probability theory, is based on general notions of measure theory. Its initial development was motivated by problems of statistical physics. A central concern of ergodic theory is the behavior of a dynamical system when it is allowed to run for a long time. The first result in this direction is the Poincaré recurrence theorem, which claims that almost all points in any subset of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business international ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lennart Carleson
Lennart Axel Edvard Carleson (born 18 March 1928) is a Swedish mathematician, known as a leader in the field of harmonic analysis. One of his most noted accomplishments is his proof of Lusin's conjecture. He was awarded the Abel Prize in 2006 for "his profound and seminal contributions to harmonic analysis and the theory of smooth dynamical systems." Life He was a student of Arne Beurling and received his Ph.D. from Uppsala University in 1950. He did his post-doctoral work at Harvard University where he met and discussed Fourier series and their convergence with Antoni Zygmund and Raphaël Salem who were there in 1950 and 1951. He is a professor emeritus at Uppsala University, the Royal Institute of Technology in Stockholm, and the University of California, Los Angeles, and has served as director of the Mittag-Leffler Institute in Djursholm outside Stockholm 1968–1984. Between 1978 and 1982 he served as president of the International Mathematical Union. Carleson married Butt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcendental Function
In mathematics, a transcendental function is an analytic function that does not satisfy a polynomial equation, in contrast to an algebraic function. In other words, a transcendental function "transcends" algebra in that it cannot be expressed algebraically. Examples of transcendental functions include the exponential function, the logarithm, and the trigonometric functions. Definition Formally, an analytic function ''f''(''z'') of one real or complex variable ''z'' is transcendental if it is algebraically independent of that variable. This can be extended to functions of several variables. History The transcendental functions sine and cosine were tabulated from physical measurements in antiquity, as evidenced in Greece ( Hipparchus) and India ( jya and koti-jya). In describing Ptolemy's table of chords, an equivalent to a table of sines, Olaf Pedersen wrote: A revolutionary understanding of these circular functions occurred in the 17th century and was explicate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function Iteration
In mathematics, an iterated function is a function (that is, a function from some set to itself) which is obtained by composing another function with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: :with the circle‑shaped symbol of function composition. Iterated functions are objects of study in computer science, fractals, dynamical systems, mathematics and renormalization group physics. Definition The formal definition of an iterated function on a set ''X'' follows. Let be a set and be a function. Defining as the ''n''-th iterate of (a notation introduced by Hans Heinrich Bürmann and John Frederick William Herschel), where ''n'' is a non-negative integer, by: f^0 ~ \stackrel ~ \operatorname_X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamical System
In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a set, without the need of a smooth space-time structure defined on it. At any given time, a dynamical system has a state representing a point in an appropriate state space. This state is often given by a tuple of real numbers or by a vector in a ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fatou Set
In the context of complex dynamics, a branch of mathematics, the Julia set and the Fatou set are two complementary sets (Julia "laces" and Fatou "dusts") defined from a function. Informally, the Fatou set of the function consists of values with the property that all nearby values behave similarly under repeated iteration of the function, and the Julia set consists of values such that an arbitrarily small perturbation can cause drastic changes in the sequence of iterated function values. Thus the behavior of the function on the Fatou set is "regular", while on the Julia set its behavior is "chaotic". The Julia set of a function    is commonly denoted \operatorname(f), and the Fatou set is denoted \operatorname(f). These sets are named after the French mathematicians Gaston Julia and Pierre Fatou whose work began the study of complex dynamics during the early 20th century. Formal definition Let f(z) be a non-constant holomorphic function from the Riemann sphere on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is '' locally connected'', which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]