Nonstandard Analysis
The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using (ε, δ)-definition of limit, limits rather than infinitesimals. Nonstandard analysis instead reformulates the calculus using a logically rigorous notion of infinitesimal numbers. Nonstandard analysis originated in the early 1960s by the mathematician Abraham Robinson. He wrote: ... the idea of infinitely small or ''infinitesimal'' quantities seems to appeal naturally to our intuition. At any rate, the use of infinitesimals was widespread during the formative stages of the Differential and Integral Calculus. As for the objection ... that the distance between two distinct real numbers cannot be infinitely small, Gottfried Wilhelm Leibniz argued that the theory of infinitesimals implies the introduction of ideal numbers which might be infinitely small or inf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gottfried Wilhelm Leibniz, Bernhard Christoph Francke
Gottfried is a masculine German given name. It is derived from the Old High German name , recorded since the 7th century, and composed of the elements (conflated from the etyma for "God" and "good", and possibly further conflated with ) and ("peace" or "protection"). The German name was commonly Hypocorism, hypocoristically abbreviated as ''Götz'' from the late medieval period. ''Götz'' and variants (including ''Goethe (surname), Göthe, Göthke'' and ''Göpfert'') also came into use as German surnames. Gottfried is also a common surname among Ashkenazi Jews. Given name The given name ''Gottfried'' became extremely frequent in Germany in the High Middle Ages, to the point of eclipsing most other names in ''God-'' (such as ''Godabert, Gotahard, Godohelm, Godomar, Godwin (other), Goduin, Gotrat, Godulf'', etc.) The name was Latinisation of names, Latinised as ''Godefridus''. Medieval bearers of the name include: *Gotfrid, Duke of Alemannia and Raetia Curiensis, Raetia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordered Field
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard orderings. Every subfield of an ordered field is also an ordered field in the inherited order. Every ordered field contains an ordered subfield that is isomorphic to the rational numbers. Every Dedekind-complete ordered field is isomorphic to the reals. Squares are necessarily non-negative in an ordered field. This implies that the complex numbers cannot be ordered since the square of the imaginary unit ''i'' is (which is negative in any ordered field). Finite fields cannot be ordered. Historically, the axiomatization of an ordered field was abstracted gradually from the real numbers, by mathematicians including David Hilbert, Otto Hölder and Hans Hahn. This grew eventually into the Artin–Schreier theory of ordered fields and f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fréchet Filter
In mathematics, the Fréchet filter, also called the cofinite filter, on a set X is a certain collection of subsets of X (that is, it is a particular subset of the power set of X). A subset F of X belongs to the Fréchet filter if and only if the complement of F in X is finite. Any such set F is said to be , which is why it is alternatively called the ''cofinite filter'' on X. The Fréchet filter is of interest in topology, where filters originated, and relates to order and lattice theory because a set's power set is a partially ordered set under set inclusion (more specifically, it forms a lattice). The Fréchet filter is named after the French mathematician Maurice Fréchet (1878-1973), who worked in topology. Definition A subset A of a set X is said to be cofinite in X if its complement in X (that is, the set X \setminus A) is finite. If the empty set is allowed to be in a filter, the Fréchet filter on X, denoted by F is the set of all cofinite subsets of X. That is: F = ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ultrafilter
In the Mathematics, mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") P is a certain subset of P, namely a Maximal element, maximal Filter (mathematics), filter on P; that is, a proper filter on P that cannot be enlarged to a bigger proper filter on P. If X is an arbitrary set, its power set (X), ordered by set inclusion, is always a Boolean algebra (structure), Boolean algebra and hence a poset, and ultrafilters on (X) are usually called X.If X happens to be partially ordered, too, particular care is needed to understand from the context whether an (ultra)filter on (X) or an (ultra)filter just on X is meant; both kinds of (ultra)filters are quite different. Some authors use "(ultra)filter ''of'' a partial ordered set" vs. "''on'' an arbitrary set"; i.e. they write "(ultra)filter on X" to abbreviate "(ultra)filter of (X)". An ultrafilter on a set X may be considered as a finitely additive 0-1-valued measure (mathematics), measure on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semiring
In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distributive lattices. The smallest semiring that is not a ring is the two-element Boolean algebra, for instance with logical disjunction \lor as addition. A motivating example that is neither a ring nor a lattice is the set of natural numbers \N (including zero) under ordinary addition and multiplication. Semirings are abundant because a suitable multiplication operation arises as the function composition of endomorphisms over any commutative monoid. Terminology Some authors define semirings without the requirement for there to be a 0 or 1. This makes the analogy between ring and on the one hand and and on the other hand work more smoothly. These authors often use rig for the concept defined here. This originated as a joke, suggestin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperreal Number
In mathematics, hyperreal numbers are an extension of the real numbers to include certain classes of infinite and infinitesimal numbers. A hyperreal number x is said to be finite if, and only if, , x, [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ultrapower
The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All factors need to have the same signature. The ultrapower is the special case of this construction in which all factors are equal. For example, ultrapowers can be used to construct new fields from given ones. The hyperreal numbers, an ultrapower of the real numbers, are a special case of this. Some striking applications of ultraproducts include very elegant proofs of the compactness theorem and the completeness theorem, Keisler's ultrapower theorem, which gives an algebraic characterization of the semantic notion of elementary equivalence, and the Robinson–Zakon presentation of the use of superstructures and their monomorphisms to construct nonstandard models of analysis, leading to the growth of the area of nonstandard analysis, which ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thoralf Skolem
Thoralf Albert Skolem (; 23 May 1887 – 23 March 1963) was a Norwegian mathematician who worked in mathematical logic and set theory. Life Although Skolem's father was a primary school teacher, most of his extended family were farmers. Skolem attended secondary school in Kristiania (later renamed Oslo), passing the university entrance examinations in 1905. He then entered Det Kongelige Frederiks Universitet to study mathematics, also taking courses in physics, chemistry, zoology and botany. In 1909, he began working as an assistant to the physicist Kristian Birkeland, known for bombarding magnetized spheres with electrons and obtaining aurora-like effects; thus Skolem's first publications were physics papers written jointly with Birkeland. In 1913, Skolem passed the state examinations with distinction, and completed a dissertation titled ''Investigations on the Algebra of Logic''. He also traveled with Birkeland to the Sudan to observe the zodiacal light. He spent the wint ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Analysis
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability. Real analysis is distinguished from complex analysis, which deals with the study of complex numbers and their functions. Scope Construction of the real numbers The theorems of real analysis rely on the properties of the (established) real number system. The real number system consists of an uncountable set (\mathbb), together with two binary operations denoted and \cdot, and a total order denoted . The operations make the real numbers a field, and, along with the order, an ordered field. The real number system is the unique '' complete ordered field'', in the sense that any other complete ordered field is isomorphic to it. Intuitively, completenes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Closed Field
In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. Definition A real closed field is a field ''F'' in which any of the following equivalent conditions is true: #''F'' is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in ''F'' if and only if it is true in the reals. #There is a total order on ''F'' making it an ordered field such that, in this ordering, every positive element of ''F'' has a square root in ''F'' and any polynomial of odd degree with coefficients in ''F'' has at least one root in ''F''. #''F'' is a formally real field such that every polynomial of odd degree with coefficients in ''F'' has at least one root in ''F'', and for every element ''a'' o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nonstandard Model
In model theory, a discipline within mathematical logic, a non-standard model is a model of a theory that is not isomorphic to the intended model (or standard model).Roman Kossak, 2004 ''Nonstandard Models of Arithmetic and Set Theory'' American Mathematical Soc. Existence If the intended model is infinite and the language is first-order, then the Löwenheim–Skolem theorems guarantee the existence of non-standard models. The non-standard models can be chosen as elementary extensions or elementary substructures of the intended model. Importance Non-standard models are studied in set theory, non-standard analysis and non-standard models of arithmetic. See also *Interpretation (logic) An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning unt ... References {{DEFAULTSORT:Non-Standard ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |