HOME





Near-semiring
In mathematics, a near-semiring, also called a seminearring, is an algebraic structure more general than a near-ring or a semiring. Near-semirings arise naturally from functions on monoids. Definition A near-semiring is a set ''S'' with two binary operations "+" and "·", and a constant 0 such that (''S'', +, 0) is a monoid (not necessarily commutative), (''S'', ·) is a semigroup, these structures are related by a single (right or left) distributive law, and accordingly 0 is a one-sided (right or left, respectively) absorbing element. Formally, an algebraic structure (''S'', +, ·, 0) is said to be a near-semiring if it satisfies the following axioms: # (''S'', +, 0) is a monoid, # (''S'', ·) is a semigroup, # (''a'' + ''b'') · ''c'' = ''a'' · ''c'' + ''b'' · ''c'', for all ''a'', ''b'', ''c'' in ''S'', and # 0 · ''a'' = 0 for all ''a'' in ''S''. Near-semirings are a common abstraction of semirings and near-rings olan, 1999; Pilz, 1983 The standard examples of near-sem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semiring
In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distributive lattices. The smallest semiring that is not a ring is the two-element Boolean algebra, for instance with logical disjunction \lor as addition. A motivating example that is neither a ring nor a lattice is the set of natural numbers \N (including zero) under ordinary addition and multiplication. Semirings are abundant because a suitable multiplication operation arises as the function composition of endomorphisms over any commutative monoid. Terminology Some authors define semirings without the requirement for there to be a 0 or 1. This makes the analogy between ring and on the one hand and and on the other hand work more smoothly. These authors often use rig for the concept defined here. This originated as a joke, suggestin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Arithmetic
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations. Addition The sum of two well-ordered sets and is the ordinal representing the variant of lexicographical order with least significant position first, on the union of the Cartesian products and . This way, every element of is smaller than every element of , comparisons within keep the order they already have, and likewise for comparisons within . The definition of addition can also be given by transfinite recursion on . When the right ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distributive Law
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary arithmetic, one has 2 \cdot (1 + 3) = (2 \cdot 1) + (2 \cdot 3). Therefore, one would say that multiplication ''distributes'' over addition. This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields. It is also encountered in Boolean algebra and mathematical logic, where each of the logical and (denoted \,\land\,) and the logical or (denoted \,\lor\,) distributes over the other. Definition Given a set S and two binary operators \,*\, and \,+\, on S, *the operation \,*\, is over (or with respect to) \,+\, if, given any elements x, y, \text z of S, x * (y + z) = (x * y) + (x * z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Johannes Kepler Universität Linz
The Johannes Kepler University Linz (German: ''Johannes Kepler Universität Linz'', short: ''JKU'') is a public university in Austria. It is located in Linz, the capital of Upper Austria. It offers bachelor's, master's, diploma and doctoral degrees in business, engineering, law, science, social sciences and medicine. Today, about 24,000 students study at the park campus in the northeast of Linz, with one out of nine students being from abroad. The university was the first in Austria to introduce an electronic student ID in 1998. The university is the home of the Johann Radon Institute for Computational and Applied Mathematics (RICAM) of the Austrian Academy of Sciences. History The JKU was established as the "College of Social Sciences, Economics and Business" (''Hochschule für Sozial- und Wirtschaftswissenschaften'') in 1966. The Faculty of Sciences and Engineering was established three years later and in 1975, the college was awarded university status and the Faculty of Law ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additively Indecomposable Ordinal
In set theory, a branch of mathematics, an additively indecomposable ordinal ''α'' is any ordinal number that is not 0 such that for any \beta,\gamma<\alpha, we have \beta+\gamma<\alpha. Additively indecomposable ordinals were named the ''gamma numbers'' by Cantor,A. Rhea,
The Ordinals as a Consummate Abstraction of Number Systems
(2017), preprint.
p.20 and are also called ''additive principal numbers''. The class (set theory), class of additively indecomposable ordinals may be denoted \mathbb H, from the German "Hauptzahl".W. Pohlers, "A short course in ordinal analysis", pp. 27–78. Appearing in Peter Aczel, Aczel, Simmons, ''Proof Theory: A selection of papers from the Leeds Proof Theory Programme 1990'' (1992). Cambridge University Press,
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class (set Theory)
In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid paradoxes, especially Russell's paradox (see '). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity. A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems. In Quine's set-theoretical writing, the phrase "ultimate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Function Composition
In mathematics, the composition operator \circ takes two function (mathematics), functions, f and g, and returns a new function h(x) := (g \circ f) (x) = g(f(x)). Thus, the function is function application, applied after applying to . (g \circ f) is pronounced "the composition of and ". Reverse composition, sometimes denoted f \mapsto g , applies the operation in the opposite order, applying f first and g second. Intuitively, reverse composition is a chaining process in which the output of function feeds the input of function . The composition of functions is a special case of the composition of relations, sometimes also denoted by \circ. As a result, all properties of composition of relations are true of composition of functions, such as #Properties, associativity. Examples * Composition of functions on a finite set (mathematics), set: If , and , then , as shown in the figure. * Composition of functions on an infinite set: If (where is the set of all real numbers) is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Absorbing Element
In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero element because there is no risk of confusion with other notions of zero, with the notable exception: under additive notation ''zero'' may, quite naturally, denote the neutral element of a monoid. In this article "zero element" and "absorbing element" are synonymous. Definition Formally, let be a set ''S'' with a closed binary operation • on it (known as a magma). A zero element (or an absorbing/annihilating element) is an element ''z'' such that for all ''s'' in ''S'', . This notion can be refined to the notions of left zero, where one requires only that , and right zero, where . Absorbing elements are particularly interesting for semigroups, especially the multip ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily the elementary arithmetic multiplication): , or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. As in the case of groups or magmas, the semigroup operation need not be commutative, so is not necessarily equal to ; a well-known example of an operation that is associative but non-commutative is matrix multiplication. If the semigroup operation is commutative, then the semigroup is called a ''commutative semigroup' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathematics), modules, vector spaces, lattice (order), lattices, and algebra over a field, algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variable (mathematics), variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in mathematical education, pedagogy. Algebraic structures, with their associated homomorphisms, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]