Mode Collapse
   HOME





Mode Collapse
In machine learning, mode collapse is a failure mode observed in generative models, originally noted in Generative Adversarial Networks (GANs). It occurs when the model produces outputs that are less diverse than expected, effectively "collapsing" to generate only a few modes of the data distribution while ignoring others. This phenomenon undermines the goal of generative models to capture the full diversity of the training data. There are typically two times at which a model can collapse: either during training or during post-training finetuning. Mode collapse reduces the utility of generative models in applications, such as in *image synthesis (repetitive or near-identical images); * data augmentation (limited diversity in synthetic data); * scientific simulations (failure to explore all plausible scenarios). Distinctions Mode collapse is distinct from overfitting, where a model learns detailed patterns in the training data that does not generalize to the test data, and un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F.,Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning IEEE Transactions on Vehicular Technology, 2020. A subset of machine learning is closely related to computational statistics, which focuses on making pred ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Large Language Model
A large language model (LLM) is a language model consisting of a neural network with many parameters (typically billions of weights or more), trained on large quantities of unlabelled text using self-supervised learning. LLMs emerged around 2018 and perform well at a wide variety of tasks. This has shifted the focus of natural language processing research away from the previous paradigm of training specialized supervised models for specific tasks. Properties Though the term ''large language model'' has no formal definition, it often refers to deep learning models having a parameter count on the order of billions or more. LLMs are general purpose models which excel at a wide range of tasks, as opposed to being trained for one specific task (such as sentiment analysis, named entity recognition, or mathematical reasoning). The skill with which they accomplish tasks, and the range of tasks at which they are capable, seems to be a function of the amount of resources (data, parameter-si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F.,Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning IEEE Transactions on Vehicular Technology, 2020. A subset of machine learning is closely related to computational statistics, which focuses on making pred ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Overfitting
mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". An overfitted model is a mathematical model that contains more parameters than can be justified by the data. The essence of overfitting is to have unknowingly extracted some of the residual variation (i.e., the noise) as if that variation represented underlying model structure. Underfitting occurs when a mathematical model cannot adequately capture the underlying structure of the data. An under-fitted model is a model where some parameters or terms that would appear in a correctly specified model are missing. Under-fitting would occur, for example, when fitting a linear model to non-linear data. Such a model will tend to have poor predictive performance. The possibility of over-fitting exists because the criterion used for selecting the model is no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generative Artificial Intelligence
Generative artificial intelligence (generative AI, GenAI, or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. These models machine learning, learn the underlying patterns and structures of their training data set, training data and use them to produce new data based on the input, which often comes in the form of natural language Prompt (natural language), prompts. Improvements in transformer (machine learning model), transformer-based deep learning, deep neural networks, particularly large language model, large language models (LLMs), enabled an AI boom of generative AI systems in the early 2020s. These include chatbots such as ChatGPT, Microsoft Copilot, Copilot, Gemini (chatbot), Gemini, and LLaMA; text-to-image artificial intelligence art, artificial intelligence image generation systems such as Stable Diffusion, Midjourney, and DALL-E; and Text-to-video model, text-to-video AI generators such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generative Model
In statistical classification, two main approaches are called the generative approach and the discriminative approach. These compute classifiers by different approaches, differing in the degree of statistical modelling. Terminology is inconsistent, but three major types can be distinguished, following : # A generative model is a statistical model of the joint probability distribution P(X, Y) on given observable variable ''X'' and target variable ''Y'';: "Generative classifiers learn a model of the joint probability, p(x, y), of the inputs ''x'' and the label ''y'', and make their predictions by using Bayes rules to calculate p(y\mid x), and then picking the most likely label ''y''. # A discriminative model is a model of the conditional probability P(Y\mid X = x) of the target ''Y'', given an observation ''x''; and # Classifiers computed without using a probability model are also referred to loosely as "discriminative". The distinction between these last two classes is not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variational Autoencoder
In machine learning, a variational autoencoder (VAE), is an artificial neural network architecture introduced by Diederik P. Kingma and Max Welling, belonging to the families of probabilistic graphical models and variational Bayesian methods. Variational autoencoders are often associated with the autoencoder model because of its architectural affinity, but with significant differences in the goal and mathematical formulation. Variational autoencoders are probabilistic generative models that require neural networks as only a part of their overall structure, as e.g. in VQ-VAE. The neural network components are typically referred to as the encoder and decoder for the first and second component respectively. The first neural network maps the input variable to a latent space that corresponds to the parameters of a variational distribution. In this way, the encoder can produce multiple different samples that all come from the same distribution. The decoder has the opposite function, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reinforcement Learning From Human Feedback
In machine learning, reinforcement learning from human feedback (RLHF) or reinforcement learning from human preferences is a technique that trains a "reward model" directly from human feedback and uses the model as a reward function to optimize an agent's policy using reinforcement learning (RL) through an optimization algorithm like Proximal Policy Optimization. The reward model is trained in advance to the policy being optimized to predict if a given output is good (high reward) or bad (low reward). RLHF can improve the robustness and exploration of RL agents, especially when the reward function is sparse or noisy. Human feedback is collected by asking humans to rank instances of the agent's behavior. These rankings can then be used to score outputs, for example with the Elo rating system. RLHF has been applied to various domains of natural language processing, such as conversational agents, text summarization, and natural language understanding. Ordinary reinforcement learnin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transformer (deep Learning Architecture)
A transformer is a deep learning architecture developed by researchers at Google and based on the multi-head attention mechanism, proposed in a 2017 paper " Attention Is All You Need". Text is converted to numerical representations called tokens, and each token is converted into a vector via looking up from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism allowing the signal for key tokens to be amplified and less important tokens to be diminished. Transformers have the advantage of having no recurrent units, and therefore require less training time than earlier recurrent neural architectures (RNNs) such as long short-term memory (LSTM). Later variations have been widely adopted for training large language models (LLM) on large (language) datasets, such as the Wikipedia corpus and Common Crawl. Transformers were first developed as an impr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normalization (machine Learning)
In machine learning, normalization is a statistical technique with various applications. There are mainly two forms of normalization, data normalization and activation normalization. Data normalization, or feature scaling, is a general technique in statistics, and it includes methods that rescale input data so that they have well-behaved range, mean, variance, and other statistical properties. Activation normalization is specific to deep learning, and it includes methods that rescale the activation of hidden neurons inside a neural network. Normalization is often used for faster training convergence, less sensitivity to variations in input data, less overfitting, and better generalization to unseen data. They are often theoretically justified as reducing covariance shift, smoother optimization landscapes, increasing regularization, though they are mainly justified by empirical success. Batch normalization Batch normalization (BatchNorm) operates on the activations of a layer for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generative Model
In statistical classification, two main approaches are called the generative approach and the discriminative approach. These compute classifiers by different approaches, differing in the degree of statistical modelling. Terminology is inconsistent, but three major types can be distinguished, following : # A generative model is a statistical model of the joint probability distribution P(X, Y) on given observable variable ''X'' and target variable ''Y'';: "Generative classifiers learn a model of the joint probability, p(x, y), of the inputs ''x'' and the label ''y'', and make their predictions by using Bayes rules to calculate p(y\mid x), and then picking the most likely label ''y''. # A discriminative model is a model of the conditional probability P(Y\mid X = x) of the target ''Y'', given an observation ''x''; and # Classifiers computed without using a probability model are also referred to loosely as "discriminative". The distinction between these last two classes is not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]