Minimal Generating Set
   HOME





Minimal Generating Set
In mathematics, a generating set Γ of a module ''M'' over a ring ''R'' is a subset of ''M'' such that the smallest submodule of ''M'' containing Γ is ''M'' itself (the smallest submodule containing a subset is the intersection of all submodules containing the set). The set Γ is then said to generate ''M''. For example, the ring ''R'' is generated by the identity element 1 as a left ''R''-module over itself. If there is a finite generating set, then a module is said to be finitely generated. This applies to ideals, which are the submodules of the ring itself. In particular, a principal ideal is an ideal that has a generating set consisting of a single element. Explicitly, if Γ is a generating set of a module ''M'', then every element of ''M'' is a (finite) ''R''-linear combination of some elements of Γ; i.e., for each ''x'' in ''M'', there are ''r''1, ..., ''r''''m'' in ''R'' and ''g''1, ..., ''g''''m'' in Γ such that : x = r_1 g_1 + \cdots + r_m g_m. Put in another way, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basis (linear Algebra)
In mathematics, a Set (mathematics), set of elements of a vector space is called a basis (: bases) if every element of can be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to . The elements of a basis are called . Equivalently, a set is a basis if its elements are linearly independent and every element of is a linear combination of elements of . In other words, a basis is a linearly independent spanning set. A vector space can have several bases; however all the bases have the same number of elements, called the dimension (vector space), dimension of the vector space. This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces. Basis vectors find applications in the study of crystal structures and frame of reference, frames of reference. De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flat Module
In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion-free modules. Formally, a module (mathematics), module ''M'' over a ring (mathematics), ring ''R'' is ''flat'' if taking the tensor product of modules, tensor product over ''R'' with ''M'' preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact. Flatness was introduced by in his paper ''Géometrie Algébrique et Géométrie Analytique''. Definition A left module over a ring is ''flat'' if the following condition is satisfied: for every injective module homomorphism, linear map \varphi: K \to L of right -modules, the map : \varphi \otimes_R M: K \otimes_R M \to L \otimes_R M is also injective, where \varphi \otimes_R M is the map induced by k \otimes m \mapsto \varphi(k) \otimes m. For this definition, it is enough to restrict the injections \varphi to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Countably Generated Module
In mathematics, a module over a (not necessarily commutative) ring is countably generated if it is generated as a module by a countable subset. The importance of the notion comes from Kaplansky's theorem (Kaplansky 1958), which states that a projective module is a direct sum of countably generated modules. More generally, a module over a possibly non-commutative ring is projective if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ... (i) it is flat, (ii) it is a direct sum of countably generated modules and (iii) it is a Mittag-Leffler module. (Bazzoni–Stovicek) References * * Module theory {{linear-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Presentation Of A Module
In algebra, a free presentation of a module ''M'' over a commutative ring ''R'' is an exact sequence of ''R''-modules: :\bigoplus_ R \ \overset \to\ \bigoplus_ R \ \overset\to\ M \to 0. Note the image under ''g'' of the standard basis generates ''M''. In particular, if ''J'' is finite, then ''M'' is a finitely generated module. If ''I'' and ''J'' are finite sets, then the presentation is called a finite presentation; a module is called finitely presented if it admits a finite presentation. Since ''f'' is a module homomorphism between free modules, it can be visualized as an (infinite) matrix with entries in ''R'' and ''M'' as its cokernel. A free presentation always exists: any module is a quotient of a free module: F \ \overset\to\ M \to 0, but then the kernel of ''g'' is again a quotient of a free module: F' \ \overset \to\ \ker g \to 0. The combination of ''f'' and ''g'' is a free presentation of ''M''. Now, one can obviously keep "resolving" the kernels in this fashion; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimal Resolution (algebra)
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of objects of an abelian category) that is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are non-zero; it is usually represented by a finite exact sequence in which the leftmost object (for resolutions) or the rightmost object (for coresolutions) is the zero-object. Generally, the objects in the sequence are restricted to have some property ''P'' (for example to be free). Thus one speaks of a ''P resolution''. In particular, every module has free resolutions, projective resolut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linearly Independent
In the theory of vector spaces, a set of vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space. Definition A sequence of vectors \mathbf_1, \mathbf_2, \dots, \mathbf_k from a vector space is said to be ''linearly dependent'', if there exist scalars a_1, a_2, \dots, a_k, not all zero, such that :a_1\mathbf_1 + a_2\mathbf_2 + \cdots + a_k\mathbf_k = \mathbf, where \mathbf denotes the zero vector. This implies that at least one of the scalars is nonzero, say a_1\ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Flat Module
In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion-free modules. Formally, a module (mathematics), module ''M'' over a ring (mathematics), ring ''R'' is ''flat'' if taking the tensor product of modules, tensor product over ''R'' with ''M'' preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact. Flatness was introduced by in his paper ''Géometrie Algébrique et Géométrie Analytique''. Definition A left module over a ring is ''flat'' if the following condition is satisfied: for every injective module homomorphism, linear map \varphi: K \to L of right -modules, the map : \varphi \otimes_R M: K \otimes_R M \to L \otimes_R M is also injective, where \varphi \otimes_R M is the map induced by k \otimes m \mapsto \varphi(k) \otimes m. For this definition, it is enough to restrict the injections \varphi to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nakayama's Lemma
In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring. The lemma is named after the Japanese mathematician Tadashi Nakayama and introduced in its present form in , although it was first discovered in the special case of ideals in a commutative ring by Wolfgang Krull and then in general by Goro Azumaya (1951). In the commutative case, the lemma is a simple consequence of a generalized fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Residue Field
In mathematics, the residue field is a basic construction in commutative algebra. If R is a commutative ring and \mathfrak is a maximal ideal, then the residue field is the quotient ring k=R/\mathfrak, which is a field. Frequently, R is a local ring and \mathfrak is then its unique maximal ideal. In abstract algebra, the splitting field of a polynomial is constructed using residue fields. Residue fields also applied in algebraic geometry, where to every point x of a scheme X one associates its residue field k(x). One can say a little loosely that the residue field of a point of an abstract algebraic variety is the ''natural domain'' for the coordinates of the point. Definition Suppose that R is a commutative local ring, with maximal ideal \mathfrak. Then the residue field is the quotient ring R/\mathfrak. Now suppose that X is a scheme and x is a point of X. By the definition of a scheme, we may find an affine neighbourhood \mathcal = \text(A) of x, with some commutative ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. The set of maximal ideals of a unital commutative ring ''R'', typically equipped with the Zariski topology, is known as the maximal spectrum of ''R'' and is variously denoted m-Spec ''R'', Specm ''R'', MaxSpec ''R'', or Spm ''R''. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one-sided maximal ideal ''A'' is not necessarily ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Local Ring
In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal. The concept of local rings was introduced by Wolfgang Krull in 1938 under the name ''Stellenringe''. The English term ''local ring'' is due to Zariski. Definition and first consequences A ring ''R'' is a local ring if it has any one of the following equivalent properties: * ''R'' has a unique maximal left ideal. * ''R'' has a unique maximal right ideal. * 1 ≠ 0 and the sum of any two non- units in ''R'' is a non-unit. * 1 ≠ 0 and if ''x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]