Large N Limit
   HOME





Large N Limit
In quantum field theory and statistical mechanics, the 1/''N'' expansion (also known as the "large ''N''" expansion) is a particular perturbation theory, perturbative analysis of quantum field theories with an internal symmetry group theory, group such as special orthogonal group, SO(N) or special unitary group, SU(N). It consists in deriving an expansion for the properties of the theory in powers of 1/N, which is treated as a small parameter. This technique is used in Quantum chromodynamics, QCD (even though N is only 3 there) with the gauge group SU(3). Another application in particle physics is to the study of AdS/CFT dualities. It is also extensively used in condensed matter physics where it can be used to provide a rigorous basis for mean-field theory. Example Starting with a simple example — the orthogonal group, O(N) Quartic interaction, φ4 — the scalar field φ takes on values in the real number, real vector representation of O(N). Using the index notation for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Three Gluon Vertex In T'Hooft Notation
3 (three) is a number, numeral and digit. It is the natural number following 2 and preceding 4, and is the smallest odd prime number and the only prime preceding a square number. It has religious and cultural significance in many societies. Evolution of the Arabic digit The use of three lines to denote the number 3 occurred in many writing systems, including some (like Roman and Chinese numerals) that are still in use. That was also the original representation of 3 in the Brahmic (Indian) numerical notation, its earliest forms aligned vertically. However, during the Gupta Empire the sign was modified by the addition of a curve on each line. The Nāgarī script rotated the lines clockwise, so they appeared horizontally, and ended each line with a short downward stroke on the right. In cursive script, the three strokes were eventually connected to form a glyph resembling a with an additional stroke at the bottom: ३. The Indian digits spread to the Caliphate in the 9th c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Quartic Interaction
In quantum field theory, a quartic interaction or ''φ''4 theory is a type of self-interaction in a scalar field. Other types of quartic interactions may be found under the topic of four-fermion interactions. A classical free scalar field \varphi satisfies the Klein–Gordon equation. If a scalar field is denoted \varphi, a quartic interaction is represented by adding a potential energy term (/) \varphi^4 to the Lagrangian density. The coupling constant \lambda is dimensionless in 4-dimensional spacetime. This article uses the (+ - - -) metric signature for Minkowski space. Lagrangian for a real scalar field The Lagrangian density for a real scalar field with a quartic interaction is :\mathcal(\varphi)=\frac partial^\mu \varphi \partial_\mu \varphi -m^2 \varphi^2-\frac \varphi^4. This Lagrangian has a global Z2 symmetry mapping \varphi\to-\varphi. Lagrangian for a complex scalar field The Lagrangian for a complex scalar field can be motivated as follows. For ''two'' scal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Gauge Theory
In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, the Lagrangian is invariant under these transformations. The term "gauge" refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the '' symmetry group'' or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the gauge field. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called gauge invariance). When such a theory is quantized, the quanta of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

General Relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General theory of relativity, relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time in physics, time, or four-dimensional spacetime. In particular, the ''curvature of spacetime'' is directly related to the energy and momentum of whatever is present, including matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations. Newton's law of universal gravitation, which describes gravity in classical mechanics, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Vacuum Energy Density
A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often discuss ideal test results that would occur in a ''perfect'' vacuum, which they sometimes simply call "vacuum" or free space, and use the term partial vacuum to refer to an actual imperfect vacuum as one might have in a laboratory or in space. In engineering and applied physics on the other hand, vacuum refers to any space in which the pressure is considerably lower than atmospheric pressure. The Latin term ''in vacuo'' is used to describe an object that is surrounded by a vacuum. The ''quality'' of a partial vacuum refers to how closely it approaches a perfect vacuum. Other things equal, lower gas pressure means higher-quality vacuum. For example, a typical vacuum cleaner produces enough suction to reduce air pressure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Connected Correlation Function
In statistical mechanics, an Ursell function or connected correlation function, is a cumulant of a random variable. It can often be obtained by summing over connected Feynman diagrams (the sum over all Feynman diagrams gives the correlation functions). The Ursell function was named after Harold Ursell, who introduced it in 1927. Definition If ''X'' is a random variable, the moments ''s''''n'' and cumulants (same as the Ursell functions) ''u''''n'' are functions of ''X'' related by the exponential formula: : \operatorname(\exp(zX)) = \sum_n s_n \frac = \exp\left(\sum_n u_n \frac\right) (where \operatorname is the expectation). The Ursell functions for multivariate random variables are defined analogously to the above, and in the same way as multivariate cumulants. :u_n\left(X_1, \ldots, X_n\right) = \left.\frac \cdots \frac\log \operatorname\left(\exp\sum z_i X_i\right)\_ The Ursell functions of a single random variable ''X'' are obtained from these by setting . The first fe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Cycle (graph Theory)
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an ''acyclic graph''. A directed graph without directed cycles is called a '' directed acyclic graph''. A connected graph without cycles is called a ''tree''. Definitions Circuit and cycle * A circuit is a non-empty trail in which the first and last vertices are equal (''closed trail''). : Let be a graph. A circuit is a non-empty trail with a vertex sequence . * A cycle or simple circuit is a circuit in which only the first and last vertices are equal. * ''n'' is called the length of the circuit resp. length of the cycle. Directed circuit and directed cycle * A directed circuit is a non-empty directed trail in which the first and last vertices are equal (''closed directed trail''). : Let be a directed grap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Feynman Diagram
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The calculation of probability amplitudes in theoretical particle physics requires the use of large, complicated integrals over a large number of variables. Feynman diagrams instead represent these integrals graphically. Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams apply primarily to quantum field theory, they can be used in other areas of physics, such as solid-state theory. Frank Wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Auxiliary Field
In physics, and especially quantum field theory, an auxiliary field is one whose equations of motion admit a single solution. Therefore, the Lagrangian (field theory), Lagrangian describing such a Field (physics), field A contains an algebraic quadratic term and an arbitrary linear term, while it contains no kinetic terms (derivatives of the field): :\mathcal_\text = \frac(A, A) + (f(\varphi), A). The equation of motion for A is :A(\varphi) = -f(\varphi), and the Lagrangian becomes :\mathcal_\text = -\frac(f(\varphi), f(\varphi)). Auxiliary fields generally do not propagate, and hence the content of any theory can remain unchanged in many circumstances by adding such fields by hand. If we have an initial Lagrangian \mathcal_0 describing a field \varphi, then the Lagrangian describing both fields is :\mathcal = \mathcal_0(\varphi) + \mathcal_\text = \mathcal_0(\varphi) - \frac\big(f(\varphi), f(\varphi)\big). Therefore, auxiliary fields can be employed to cancel quadratic terms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Coupling Constant
In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the " charges" of the bodies (i.e. the electric charge for electrostatic and the mass for Newtonian gravity) divided by the distance squared, r^2, between the bodies; thus: G in F=G m_1 m_2/r^2 for Newtonian gravity and k_\text in F=k_\textq_1 q_2/r^2 for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers. A modern and more general definition uses the Lagrangian \mathcal (or equivalently the Hamiltonian \mathcal) of a system. Usually, \mathcal (or \mathcal) of a system describing an interaction can be separated into a ''kinetic part'' T and an ''interaction part'' V: \mathcal=T-V (or \mathcal=T+V). In field theory, V always contains 3 fi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Lagrangian Density
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom. One motivation for the development of the Lagrangian formalism on fields, and more generally, for classical field theory, is to provide a clear mathematical foundation for quantum field theory, which is infamously beset by formal difficulties that make it unacceptable as a mathematical theory. The Lagrangians presented here are identical to their quantum equivalents, but, in treating the fields as classical fields, instead of being quantized, one can provide definitions and obtain solutions with properties compatible with the conventional formal approach to the mathematics of partial differential equations. This enabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Einstein Summation Convention
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in physics applications that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916. Introduction Statement of convention According to this convention, when an index variable appears twice in a single term and is not otherwise defined (see Free and bound variables), it implies summation of that term over all the values of the index. So where the indices can range over the set , y = \sum_^3 x^i e_i = x^1 e_1 + x^2 e_2 + x^3 e_3 is simplified by the convention to: y = x^i e_i The upper indices are not exponen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]