HOME





Infinitude Of Primes
Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proven by Euclid in his work '' Elements''. There are several proofs of the theorem. Euclid's proof Euclid offered a proof published in his work ''Elements'' (Book IX, Proposition 20), which is paraphrased here. Consider any finite list of prime numbers ''p''1, ''p''2, ..., ''p''''n''. It will be shown that there exists at least one additional prime number not included in this list. Let ''P'' be the product of all the prime numbers in the list: ''P'' = ''p''1''p''2...''p''''n''. Let ''q'' = ''P'' + 1. Then ''q'' is either prime or not: *If ''q'' is prime, then there is at least one more prime that is not in the list, namely, ''q'' itself. *If ''q'' is not prime, then some prime factor ''p'' divides ''q''. If this factor ''p'' were in our list, then it would also divide ''P'' (since ''P'' is the pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Series
In mathematics, a geometric series is a series (mathematics), series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, 1/2 + 1/4 + 1/8 + 1/16 + ⋯, the series \tfrac12 + \tfrac14 + \tfrac18 + \cdots is a geometric series with common ratio , which converges to the sum of . Each term in a geometric series is the geometric mean of the term before it and the term after it, in the same way that each term of an arithmetic series is the arithmetic mean of its neighbors. While Ancient Greek philosophy, Greek philosopher Zeno's paradoxes about time and motion (5th century BCE) have been interpreted as involving geometric series, such series were formally studied and applied a century or two later by Greek mathematics, Greek mathematicians, for example used by Archimedes to Quadrature of the Parabola, calculate the area inside a parabola (3rd century BCE). Today, geometric series are used in mathematical finance, calculati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Evenly Spaced Integer Topology
In general topology and number theory, branches of mathematics, one can define various topologies on the set \mathbb of integers or the set \mathbb_ of positive integers by taking as a base a suitable collection of arithmetic progressions, sequences of the form \ or \. The open sets will then be unions of arithmetic progressions in the collection. Three examples are the Furstenberg topology on \mathbb, and the Golomb topology and the Kirch topology on \mathbb_. Precise definitions are given below. Hillel Furstenberg introduced the first topology in order to provide a "topological" proof of the infinitude of the set of primes. The second topology was studied by Solomon Golomb and provides an example of a countably infinite Hausdorff space that is connected. The third topology, introduced by A.M. Kirch, is an example of a countably infinite Hausdorff space that is both connected and locally connected. These topologies also have interesting separation and homogeneity propertie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Monthly
''The American Mathematical Monthly'' is a peer-reviewed scientific journal of mathematics. It was established by Benjamin Finkel in 1894 and is published by Taylor & Francis on behalf of the Mathematical Association of America. It is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. The editor-in-chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The editor-in-chief heads all departments of the organization and is held accoun ... is Vadim Ponomarenko ( San Diego State University). The journal gives the Lester R. Ford Award annually to "authors of articles of expository excellence" published in the journal. Editors-in-chief The following persons are or have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Point-set Topology
In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are ''continuity'', ''compactness'', and ''connectedness'': * Continuous functions, intuitively, take nearby points to nearby points. * Compact sets are those that can be covered by finitely many sets of arbitrarily small size. * Connected sets are sets that cannot be divided into two pieces that are far apart. The terms 'nearby', 'arbitrarily small', and 'far apart' can all be made precise by using the concept of open sets. If we change the definition of 'open set', we change what continuous functions, compact sets, and connected sets are. Each choice of definition for 'open set' is called a ''topology''. A set with a topology i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hillel Furstenberg
Hillel "Harry" Furstenberg (; born September 29, 1935) is a German-born American-Israeli mathematician and professor emeritus at the Hebrew University of Jerusalem. He is a member of the Israel Academy of Sciences and Humanities and U.S. National Academy of Sciences and a laureate of the Abel Prize and the Wolf Prize in Mathematics. He is known for his application of probability theory and ergodic theory methods to other areas of mathematics, including number theory and Lie groups. Biography Furstenberg was born to German Jews in Nazi Germany, in 1935 (originally named "Fürstenberg"). In 1939, shortly after Kristallnacht, his family escaped to the United States and settled in the Washington Heights neighborhood of New York City, escaping the Holocaust. He attended Marsha Stern Talmudical Academy and then Yeshiva University, where he concluded his BA and MSc studies at the age of 20 in 1955. Furstenberg published several papers as an undergraduate, including "''Note on one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Number
In mathematics, a square number or perfect square is an integer that is the square (algebra), square of an integer; in other words, it is the multiplication, product of some integer with itself. For example, 9 is a square number, since it equals and can be written as . The usual notation for the square of a number is not the product , but the equivalent exponentiation , usually pronounced as " squared". The name ''square'' number comes from the name of the shape. The unit of area is defined as the area of a unit square (). Hence, a square with side length has area . If a square number is represented by ''n'' points, the points can be arranged in rows as a square each side of which has the same number of points as the square root of ''n''; thus, square numbers are a type of Figurate number, figurate numbers (other examples being Cube (algebra), cube numbers and triangular numbers). In the Real number, real number system, square numbers are non-negative. A non-negative integer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square-free Integer
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-free, but is not, because 18 is divisible by . The smallest positive square-free numbers are Square-free factorization Every positive integer n can be factored in a unique way as n=\prod_^k q_i^i, where the q_i different from one are square-free integers that are pairwise coprime. This is called the ''square-free factorization'' of . To construct the square-free factorization, let n=\prod_^h p_j^ be the prime factorization of n, where the p_j are distinct prime numbers. Then the factors of the square-free factorization are defined as q_i=\prod_p_j. An integer is square-free if and only if q_i=1 for all i > 1. An integer greater than one is the kth power of another integer if and only if k is a divisor of all i such that q_i\neq 1. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Erdős
Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered on discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He was known both for his social practice of mathematics, working with more than 500 collaborators, and for his eccentric lifestyle; ''Time'' magazine called him "The Oddball's Oddba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divergence Of The Sum Of The Reciprocals Of The Primes
The sum of the reciprocals of all prime numbers diverges; that is: \sum_\frac1p = \frac12 + \frac13 + \frac15 + \frac17 + \frac1 + \frac1 + \frac1 + \cdots = \infty This was proved by Leonhard Euler in 1737, and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series). There are a variety of proofs of Euler's result, including a lower bound for the partial sums stating that \sum_\frac1p \ge \log \log (n+1) - \log\frac6 for all natural numbers . The double natural logarithm () indicates that the divergence might be very slow, which is indeed the case. See Meissel–Mertens constant. The harmonic series First, we will describe how Euler originally discovered the result. He was considering the harmonic series \sum_^\infty \frac = 1 + \frac + \frac + \frac + \cdots = \infty He had already used the following " product formu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Leonard Eugene Dickson
Leonard Eugene Dickson (January 22, 1874 – January 17, 1954) was an American mathematician. He was one of the first American researchers in abstract algebra, in particular the theory of finite fields and classical groups, and is also remembered for a three-volume history of number theory, '' History of the Theory of Numbers''. The L. E. Dickson instructorships at the University of Chicago Department of Mathematics are named after him. Life Dickson considered himself a Texan by virtue of having grown up in Cleburne, where his father was a banker, merchant, and real estate investor. He attended the University of Texas at Austin, where George Bruce Halsted encouraged his study of mathematics. Dickson earned a B.S. in 1893 and an M.S. in 1894, under Halsted's supervision. Dickson first specialised in Halsted's own specialty, geometry. A. A. Albert (1955Leonard Eugene Dickson 1874–1954from National Academy of Sciences Both the University of Chicago and Harvard University ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]