Hypothetical Syllogism
In classical logic, a hypothetical syllogism is a valid argument form, a deductive syllogism with a conditional statement for one or both of its premises. Ancient references point to the works of Theophrastus and Eudemus for the first investigation of this kind of syllogisms. Types Hypothetical syllogisms come in two types: mixed and pure. A ''mixed'' hypothetical syllogism has two premises: one conditional statement and one statement that either affirms or denies the antecedent or consequent of that conditional statement. For example, :If P, then Q. :P. :∴ Q. In this example, the first premise is a conditional statement in which "P" is the antecedent and "Q" is the consequent. The second premise "affirms" the antecedent. The conclusion, that the consequent must be true, is deductively valid. A mixed hypothetical syllogism has four possible forms, two of which are valid, while the other two are invalid. A valid mixed hypothetical syllogism either affirms the anteceden ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Syllogism
A syllogism (, ''syllogismos'', 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true. In its earliest form (defined by Aristotle in his 350 BC book '' Prior Analytics''), a deductive syllogism arises when two true premises (propositions or statements) validly imply a conclusion, or the main point that the argument aims to get across. For example, knowing that all men are mortal (major premise), and that Socrates is a man (minor premise), we may validly conclude that Socrates is mortal. Syllogistic arguments are usually represented in a three-line form: All men are mortal. Socrates is a man. Therefore, Socrates is mortal.In antiquity, two rival syllogistic theories existed: Aristotelian syllogism and Stoic syllogism. From the Middle Ages onwards, ''categorical syllogism'' and ''syllogism'' were usually used interchangeably. This article is concern ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Validity (logic)
In logic, specifically in deductive reasoning, an argument is valid if and only if it takes a form that makes it impossible for the premises to be truth, true and the conclusion nevertheless to be False (logic), false. It is not required for a valid argument to have premises that are actually true, but to have premises that, if they were true, would guarantee the truth of the argument's conclusion. Valid arguments must be clearly expressed by means of sentences called well-formed formula, well-formed formulas (also called ''wffs'' or simply ''formulas''). The validity of an argument can be tested, proved or disproved, and depends on its logical form. Arguments In logic, an argument is a set of related statements expressing the ''premises'' (which may consists of non-empirical evidence, empirical evidence or may contain some axiomatic truths) and a ''necessary conclusion based on the relationship of the premises.'' An argument is ''valid'' if and only if it would be contradicto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Default Logic
Default logic is a non-monotonic logic proposed by Raymond Reiter to formalize reasoning with default assumptions. Default logic can express facts like “by default, something is true”; by contrast, standard logic can only express that something is true or that something is false. This is a problem because reasoning often involves facts that are true in the majority of cases but not always. A classical example is: “birds typically fly”. This rule can be expressed in standard logic either by “all birds fly”, which is inconsistent with the fact that penguins do not fly, or by “all birds that are not penguins and not ostriches and ... fly”, which requires all exceptions to the rule to be specified. Default logic aims at formalizing inference rules like this one without explicitly mentioning all their exceptions. Syntax of default logic A default theory is a pair \langle W, D \rangle. is a set of logical formulas, called ''the background theory'', that formalize the f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probabilistic Logic
Probabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory. Source trust and epistemic uncertainty about the probabilities they provide, such as defined in subjective logic, are additional elements to consider. The need to deal with a broad variety of contexts and issues has led to many different proposals. Logical background There are numerous proposals for probabilistic logics. Very roughly, they can be categorized into two different classes: those logics that attempt to make a probabilistic extension to logical entailment, s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-monotonic Logic
A non-monotonic logic is a formal logic whose entailment relation is not monotonic. In other words, non-monotonic logics are devised to capture and represent defeasible inferences, i.e., a kind of inference in which reasoners draw tentative conclusions, enabling reasoners to retract their conclusion(s) based on further evidence. Most studied formal logics have a monotonic entailment relation, meaning that adding a formula to the hypotheses never produces a pruning of its set of conclusions. Intuitively, monotonicity indicates that learning a new piece of knowledge cannot reduce the set of what is known. Monotonic logics cannot handle various reasoning tasks such as reasoning by default (conclusions may be derived only because of lack of evidence of the contrary), abductive reasoning (conclusions are only deduced as most likely explanations), some important approaches to reasoning about knowledge (the ignorance of a conclusion must be retracted when the conclusion becomes known), ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intuitionistic Logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L. E. J. Brouwer's programme of intuitionism. From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rule Of Inference
Rules of inference are ways of deriving conclusions from premises. They are integral parts of formal logic, serving as norms of the Logical form, logical structure of Validity (logic), valid arguments. If an argument with true premises follows a rule of inference then the conclusion cannot be false. ''Modus ponens'', an influential rule of inference, connects two premises of the form "if P then Q" and "P" to the conclusion "Q", as in the argument "If it rains, then the ground is wet. It rains. Therefore, the ground is wet." There are many other rules of inference for different patterns of valid arguments, such as ''modus tollens'', disjunctive syllogism, constructive dilemma, and existential generalization. Rules of inference include rules of implication, which operate only in one direction from premises to conclusions, and rules of replacement, which state that two expressions are equivalent and can be freely swapped. Rules of inference contrast with formal fallaciesinvalid argu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Propositional Logic
The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contrast it with System F, but it should not be confused with first-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Sentence
A conditional sentence is a sentence in a natural language that expresses that one thing is contingent on another, e.g., "If it rains, the picnic will be cancelled." They are so called because the impact of the sentence’s main clause is ''conditional'' on a subordinate clause. A full conditional thus contains two clauses: the subordinate clause, called the ''antecedent'' (or ''protasis'' or ''if-clause''), which expresses the condition, and the main clause, called the ''consequent'' (or ''apodosis'' or ''then-clause'') expressing the result. To form conditional sentences, languages use a variety of grammatical forms and constructions. The forms of verbs used in the antecedent and consequent are often subject to particular rules as regards their tense, aspect, and mood. Many languages have a specialized type of verb form called the conditional mood – broadly equivalent in meaning to the English "would (do something)" – for use in some types of conditional sentences. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inverse (logic)
In logic, an inverse is a type of conditional sentence which is an immediate inference made from another conditional sentence. More specifically, given a conditional sentence of the form P \rightarrow Q , the inverse refers to the sentence \neg P \rightarrow \neg Q . Since an inverse is the Contraposition, contrapositive of the Converse (logic), converse, inverse and converse are logically equivalent to each other. For example, substituting propositions in natural language for logical variables, the inverse of the following conditional proposition :"If it's raining, then Sam will meet Jack at the movies." would be :"If it's not raining, then Sam will not meet Jack at the movies." The inverse of the inverse, that is, the inverse of \neg P \rightarrow \neg Q , is \neg \neg P \rightarrow \neg \neg Q , and since the double negation of any statement is equivalent to the original statement in classical logic, the inverse of the inverse is logically equivalent to the original conditio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Denying The Antecedent
Denying the antecedent (also known as inverse error or fallacy of the inverse) is a formal fallacy of inferring the inverse from an original statement. Phrased another way, denying the antecedent occurs in the context of an indicative conditional statement and assumes that the negation of the antecedent implies the negation of the consequent. It is a type of mixed hypothetical syllogism that takes on the following form: :If ''P'', then ''Q''. :Not ''P''. :Therefore, not ''Q''. which may also be phrased as :P \rightarrow Q (P implies Q) :\therefore \neg P \rightarrow \neg Q (therefore, not-P implies not-Q) Arguments of this form are invalid. Informally, this means that arguments of this form do not give good reason to establish their conclusions, even if their premises are true. The name ''denying the antecedent'' derives from the premise "not ''P''", which denies the "if" clause (antecedent) of the conditional premise. The only situation where one may deny the an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Converse (logic)
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the Material conditional, implication ''P'' → ''Q'', the converse is ''Q'' → ''P''. For the categorical proposition ''All S are P'', the converse is ''All P are S''. Either way, the truth of the converse is generally independent from that of the original statement.Robert Audi, ed. (1999), ''The Cambridge Dictionary of Philosophy'', 2nd ed., Cambridge University Press: "converse". Implicational converse Let ''S'' be a statement of the form ''P implies Q'' (''P'' → ''Q''). Then the ''converse'' of ''S'' is the statement ''Q implies P'' (''Q'' → ''P''). In general, the truth of ''S'' says nothing about the truth of its converse, unless the Antecedent (logic), antecedent ''P'' and the consequent ''Q'' are logically equivalent. For example, consider the true statement "If I am a human, then I am mortal." The converse of that stateme ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |