Hyperbolic Manifold
In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, respectively. In these dimensions, they are important because most manifolds can be made into a hyperbolic manifold by a homeomorphism. This is a consequence of the uniformization theorem for surfaces and the geometrization theorem for 3-manifolds proved by Perelman. Rigorous definition A hyperbolic n-manifold is a complete Riemannian n-manifold of constant sectional curvature -1. Every complete, connected, simply-connected manifold of constant negative curvature -1 is isometric to the real hyperbolic space \mathbb^n. As a result, the universal cover of any closed manifold M of constant negative curvature -1 is \mathbb^n. Thus, every such M can be written as \mathbb^n/\Gamma where \Gamma is a torsion-free discrete group of isometries ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
(G,X)-manifold
In geometry, if ''X'' is a manifold with an action of a topological group ''G'' by analytical diffeomorphisms, the notion of a (''G'', ''X'')-structure on a topological space is a way to formalise it being locally isomorphic to ''X'' with its ''G''-invariant structure; spaces with a (''G'', ''X'')-structure are always manifolds and are called (''G'', ''X'')-manifolds. This notion is often used with ''G'' being a Lie group and ''X'' a homogeneous space for ''G''. Foundational examples are hyperbolic manifolds and affine manifolds. Definition and examples Formal definition Let X be a connected differential manifold and G be a subgroup of the group of diffeomorphisms of X which act analytically in the following sense: :if g_1, g_2 \in G and there is a nonempty open subset U \subset X such that g_1, g_2 are equal when restricted to U then g_1 = g_2 (this definition is inspired by the analytic continuation property of analytic diffeomorphisms on an analytic manifold). A (G, X)- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Normally Hyperbolic Invariant Manifold
A normally hyperbolic invariant manifold (NHIM) is a natural generalization of a hyperbolic fixed point and a hyperbolic set. The difference can be described heuristically as follows: For a manifold \Lambda to be normally hyperbolic we are allowed to assume that the dynamics of \Lambda itself is neutral compared with the dynamics nearby, which is not allowed for a hyperbolic set. NHIMs were introduced by Neil Fenichel in 1972. In this and subsequent papers, Fenichel proves that NHIMs possess stable and unstable manifolds and more importantly, NHIMs and their stable and unstable manifolds persist under small perturbations. Thus, in problems involving perturbation theory, invariant manifolds exist with certain hyperbolicity properties, which can in turn be used to obtain qualitative information about a dynamical system.A. Katok and B. Hasselblatt''Introduction to the Modern Theory of Dynamical Systems'', Cambridge University Press (1996), Definition Let ''M'' be a compact sm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Margulis Lemma
In differential geometry, the Margulis lemma (named after Grigory Margulis) is a result about discrete subgroups of isometries of a non-positively curved Riemannian manifold (e.g. the hyperbolic n-space). Roughly, it states that within a fixed radius, usually called the Margulis constant, the structure of the orbits of such a group cannot be too complicated. More precisely, within this radius around a point all points in its orbit are in fact in the orbit of a nilpotent subgroup (in fact a bounded finite number of such). The Margulis lemma for manifolds of non-positive curvature Formal statement The Margulis lemma can be formulated as follows. Let X be a simply-connected manifold of non-positive bounded sectional curvature. There exist constants C, \varepsilon>0 with the following property. For any discrete subgroup \Gamma of the group of isometries of X and any x \in X, if F_x is the set: : F_x = \ then the subgroup generated by F_x contains a nilpotent subgroup of ind ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hyperbolization Theorem
In geometry, Thurston's geometrization theorem or hyperbolization theorem implies that closed atoroidal Haken manifolds are hyperbolic, and in particular satisfy the Thurston conjecture. Statement One form of the hyperbolization theorem states: If ''M'' is a compact irreducible atoroidal Haken manifold whose boundary has zero Euler characteristic, then the interior of ''M'' has a complete hyperbolic structure of finite volume. The Mostow rigidity theorem implies that if a manifold of dimension at least 3 has a hyperbolic structure of finite volume, then it is essentially unique. The conditions that the manifold ''M'' should be irreducible and atoroidal are necessary, as hyperbolic manifolds have these properties. However the condition that the manifold be Haken is unnecessarily strong. Thurston's hyperbolization conjecture states that a closed irreducible atoroidal 3-manifold with infinite fundamental group is hyperbolic, and this follows from Perelman's proof of the Thurst ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hyperbolic Space
In mathematics, hyperbolic space of dimension ''n'' is the unique simply connected, ''n''-dimensional Riemannian manifold of constant sectional curvature equal to −1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of \mathbb R^n with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane. It is also sometimes referred to as Lobachevsky space or Bolyai–Lobachevsky space after the names of the author who first published on the topic of hyperbolic geometry. Sometimes the qualificative "real" is added to distinguish it from complex hyperbolic spaces. Hyperbolic space serves as the prototype of a Gromov hyperbolic space, which is a far-reaching notion including differential-geometric as well as more combinatorial spaces via a synthetic approach to negati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hyperbolic 3-manifold
In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group). Hyperbolic 3-manifolds of finite volume have a particular importance in 3-dimensional topology as follows from Thurston's geometrisation conjecture proved by Perelman. The study of Kleinian groups is also an important topic in geometric group theory. Importance in topology Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from bein ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hyperbolic Volume
In the mathematical field of knot theory, the hyperbolic volume of a hyperbolic link is the volume of the link's complement with respect to its complete hyperbolic metric. The volume is necessarily a finite real number, and is a topological invariant of the link. As a link invariant, it was first studied by William Thurston in connection with his geometrization conjecture. Knot and link invariant A hyperbolic link is a link in the 3-sphere whose complement (the space formed by removing the link from the 3-sphere) can be given a complete Riemannian metric of constant negative curvature, giving it the structure of a hyperbolic 3-manifold, a quotient of hyperbolic space by a group acting freely and discontinuously on it. The components of the link will become cusps of the 3-manifold, and the manifold itself will have finite volume. By Mostow rigidity, when a link complement has a hyperbolic structure, this structure is uniquely determined, and any geometric invariants of the struct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Mostow Rigidity Theorem
In mathematics, Mostow's rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a complete, finite-volume hyperbolic manifold of dimension greater than two is determined by the fundamental group and hence unique. The theorem was proven for closed manifolds by and extended to finite volume manifolds by in 3 dimensions, and by in all dimensions at least 3. gave an alternate proof using the Gromov norm. gave the simplest available proof. While the theorem shows that the deformation space of (complete) hyperbolic structures on a finite volume hyperbolic n-manifold (for n >2) is a point, for a hyperbolic surface of genus g>1 there is a moduli space of dimension 6g-6 that parameterizes all metrics of constant curvature (up to diffeomorphism), a fact essential for Teichmüller theory. There is also a rich theory of deformation spaces of hyperbolic structures on ''infinite'' volume manifolds in three dimensions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hyperbolic Link
In mathematics, a hyperbolic link is a link in the 3-sphere with complement that has a complete Riemannian metric of constant negative curvature, i.e. has a hyperbolic geometry. A hyperbolic knot is a hyperbolic link with one component. As a consequence of the work of William Thurston, it is known that every knot is precisely one of the following: hyperbolic, a torus knot, or a satellite knot. As a consequence, hyperbolic knots can be considered plentiful. A similar heuristic applies to hyperbolic links. As a consequence of Thurston's hyperbolic Dehn surgery theorem, performing Dehn surgeries on a hyperbolic link enables one to obtain many more hyperbolic 3-manifolds. Examples *Borromean rings are hyperbolic. *Every non-split, prime, alternating link that is not a torus link is hyperbolic by a result of William Menasco. * 41 knot (the figure-eight knot) * 52 knot (the three-twist knot) * 61 knot (the stevedore knot) * 62 knot * 63 knot * 74 knot * 10 161 knot (the "Pe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Borromean Rings
In mathematics, the Borromean rings are three simple closed curves in three-dimensional space that are link (knot theory), topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed. Most commonly, these rings are drawn as three circles in the plane, in the pattern of a Venn diagram, alternating link, alternatingly crossing over and under each other at the points where they cross. Other triples of curves are said to form the Borromean rings as long as they are topologically equivalent to the curves depicted in this drawing. The Borromean rings are named after the Italian House of Borromeo, who used the circular form of these rings as an element of their coat of arms, but designs based on the Borromean rings have been used in many cultures, including by the Norsemen and in Japan. They have been used in Christian symbolism as a sign of the Trinity, and in modern commerce as the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Figure-eight Knot (mathematics)
In knot theory, a figure-eight knot (also called Listing's knot) is the unique knot with a crossing number (knot theory), crossing number of four. This makes it the knot with the third-smallest possible crossing number, after the unknot and the trefoil knot. The figure-eight knot is a prime knot. Origin of name The name is given because tying a normal figure-eight knot in a rope and then joining the ends together, in the most natural way, gives a model of the mathematical knot. Description A simple parametric representation of the figure-eight knot is as the set of all points (''x'',''y'',''z'') where : \begin x & = \left(2 + \cos \right) \cos \\ y & = \left(2 + \cos \right) \sin \\ z & = \sin \end for ''t'' varying over the real numbers (see 2D visual realization at bottom right). The figure-eight knot is Prime knot, prime, alternating knot, alternating, rational knot, rational with an associated value of 5/3, and is Chiral kn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |