HOME





Hyperbolic Equilibrium Point
In the study of dynamical systems, a hyperbolic equilibrium point or hyperbolic fixed point is a fixed point that does not have any center manifolds. Near a hyperbolic point the orbits of a two-dimensional, non-dissipative system resemble hyperbolas. This fails to hold in general. Strogatz notes that "hyperbolic is an unfortunate name—it sounds like it should mean 'saddle point'—but it has become standard." Several properties hold about a neighborhood of a hyperbolic point, notably * A stable manifold and an unstable manifold exist, * Shadowing occurs, * The dynamics on the invariant set can be represented via symbolic dynamics, * A natural measure can be defined, * The system is structurally stable. Maps If T \colon \mathbb^ \to \mathbb^ is a ''C''1 map and ''p'' is a fixed point then ''p'' is said to be a hyperbolic fixed point when the Jacobian matrix \operatorname T (p) has no eigenvalues on the complex unit circle. One example of a map whose only fixed point is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamical System
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, fluid dynamics, the flow of water in a pipe, the Brownian motion, random motion of particles in the air, and population dynamics, the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real number, real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a Set (mathematics), set, without the need of a Differentiability, smooth space-time structure defined on it. At any given time, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalues And Eigenvectors
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normally Hyperbolic Invariant Manifold
A normally hyperbolic invariant manifold (NHIM) is a natural generalization of a hyperbolic fixed point and a hyperbolic set. The difference can be described heuristically as follows: For a manifold \Lambda to be normally hyperbolic we are allowed to assume that the dynamics of \Lambda itself is neutral compared with the dynamics nearby, which is not allowed for a hyperbolic set. NHIMs were introduced by Neil Fenichel in 1972. In this and subsequent papers, Fenichel proves that NHIMs possess stable and unstable manifolds and more importantly, NHIMs and their stable and unstable manifolds persist under small perturbations. Thus, in problems involving perturbation theory, invariant manifolds exist with certain hyperbolicity properties, which can in turn be used to obtain qualitative information about a dynamical system.A. Katok and B. Hasselblatt''Introduction to the Modern Theory of Dynamical Systems'', Cambridge University Press (1996), Definition Let ''M'' be a compact sm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Set
In dynamical systems theory, a subset Λ of a smooth manifold ''M'' is said to have a hyperbolic structure with respect to a smooth map ''f'' if its tangent bundle may be split into two invariant subbundles, one of which is contracting and the other is expanding under ''f'', with respect to some Riemannian metric on ''M''. An analogous definition applies to the case of flows. In the special case when the entire manifold ''M'' is hyperbolic, the map ''f'' is called an Anosov diffeomorphism. The dynamics of ''f'' on a hyperbolic set, or hyperbolic dynamics, exhibits features of local structural stability and has been much studied, cf. Axiom A. Definition Let ''M'' be a compact smooth manifold, ''f'': ''M'' → ''M'' a diffeomorphism, and ''Df'': ''TM'' → ''TM'' the differential of ''f''. An ''f''-invariant subset Λ of ''M'' is said to be hyperbolic, or to have a hyperbolic structure, if the restriction to Λ of the tangent bundle of ''M'' admits a sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anosov Flow
In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold ''M'' is a certain type of mapping, from ''M'' to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems. Anosov diffeomorphisms were introduced by Dmitri Victorovich Anosov, who proved that their behaviour was in an appropriate sense ''generic'' (when they exist at all). Overview Three closely related definitions must be distinguished: * If a differentiable map ''f'' on ''M'' has a hyperbolic structure on the tangent bundle, then it is called an Anosov map. Examples include the Bernoulli map, and Arnold's cat map. * If the map is a diffeomorphism, then it is called an Anosov diffeomorphism. * If a flow on a manifold splits the tangent bundle into three invariant subbundles, with one subbundle that is exponentially contracting, and one that is exponentially expanding, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linearization
In mathematics, linearization (British English: linearisation) is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. This method is used in fields such as engineering, physics, economics, and ecology. Linearization of a function Linearizations of a function are lines—usually lines that can be used for purposes of calculation. Linearization is an effective method for approximating the output of a function y = f(x) at any x = a based on the value and slope of the function at x = b, given that f(x) is differentiable on , b/math> (or , a/math>) and that a is close to b. In short, linearization approximates the output of a function near x = a. For example, \sq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Conjugacy
In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that for a topologically conjugate function follows trivially. To illustrate this directly: suppose that f and g are iterated functions, and there exists a homeomorphism h such that :g = h^ \circ f \circ h, so that f and g are topologically conjugate. Then one must have :g^n = h^ \circ f^n \circ h, and so the iterated systems are topologically conjugate as well. Here, \circ denotes function composition. Definition f\colon X \to X, g\colon Y \to Y, and h\colon Y \to X are continuous functions on topological spaces, X and Y. f being topologically semiconjugate to g means, by definition, that h is a surjection such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neighbourhood (mathematics)
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and Interior (topology), interior. Intuitively speaking, a neighbourhood of a point is a Set (mathematics), set of points containing that point where one can move some amount in any direction away from that point without leaving the set. Definitions Neighbourhood of a point If X is a topological space and p is a point in X, then a neighbourhood of p is a subset V of X that includes an open set U containing p, p \in U \subseteq V \subseteq X. This is equivalent to the point p \in X belonging to the Interior (topology)#Interior point, topological interior of V in X. The neighbourhood V need not be an open subset of X. When V is open (resp. closed, compact, etc.) in X, it is called an (resp. closed neighbourhood, compact neighbourhood, etc.). Some authors require neighbourhoods to be open, so i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hartman–Grobman Theorem
In mathematics, in the study of dynamical systems, the Hartman–Grobman theorem or linearisation theorem is a theorem about the local behaviour of dynamical systems in the neighbourhood of a hyperbolic equilibrium point. It asserts that linearisation—a natural simplification of the system—is effective in predicting qualitative patterns of behaviour. The theorem owes its name to Philip Hartman and David M. Grobman. The theorem states that the behaviour of a dynamical system in a domain near a hyperbolic equilibrium point is qualitatively the same as the behaviour of its linearization near this equilibrium point, where hyperbolicity means that no eigenvalue of the linearization has real part equal to zero. Therefore, when dealing with such dynamical systems one can use the simpler linearization of the system to analyse its behaviour around equilibria. Main theorem Consider a system evolving in time with state u(t)\in\mathbb R^n that satisfies the differential equation du/dt= ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Field
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout three dimensional space, such as the wind, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point. The elements of differential and integral calculus extend naturally to vector fields. When a vector field represents force, the line integral of a vector field represents the work done by a force moving along a path, and under this interpretation conservation of energy is exhibited as a special case of the fundamental theorem of calculus. Vector fields can usefully be thought of as representing the velocit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arnold's Cat Map
In mathematics, Arnold's cat map is a chaos theory, chaotic map from the torus into itself, named after Vladimir Arnold, who demonstrated its effects in the 1960s using an image of a cat, hence the name. It is a simple and pedagogical example for hyperbolic toral automorphisms. Thinking of the torus \mathbb^2 as the Quotient space (topology), quotient space \mathbb^2/\mathbb^2, Arnold's cat map is the transformation \Gamma : \mathbb^2 \to \mathbb^2 given by the formula :\Gamma (x,y) = (2x+y,x+y) \bmod 1. Equivalently, in matrix (mathematics), matrix notation, this is :\Gamma \left( \begin x \\ y \end \right) = \begin 2 & 1 \\ 1 & 1 \end \begin x \\ y \end \bmod 1 = \begin 1 & 1 \\ 0 & 1 \end \begin 1 & 0 \\ 1 & 1 \end \begin x \\ y \end \bmod 1. That is, with a unit equal to the width of the square image, the image is Shear mapping, sheared one unit up, then two units to the right, and all that lies outside that unit square is shifted back by the unit until it is within the sq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Map (mathematics)
In mathematics, a map or mapping is a function (mathematics), function in its general sense. These terms may have originated as from the process of making a map, geographical map: ''mapping'' the Earth surface to a sheet of paper. The term ''map'' may be used to distinguish some special types of functions, such as homomorphisms. For example, a linear map is a homomorphism of vector spaces, while the term linear function may have this meaning or it may mean a linear polynomial. In category theory, a map may refer to a morphism. The term ''transformation'' can be used interchangeably, but ''transformation (function), transformation'' often refers to a function from a set to itself. There are also a few less common uses in logic and graph theory. Maps as functions In many branches of mathematics, the term ''map'' is used to mean a Function (mathematics), function, sometimes with a specific property of particular importance to that branch. For instance, a "map" is a "continuous f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]