HOME





Hyperbolic Dehn Surgery
In mathematics, hyperbolic Dehn surgery is an operation by which one can obtain further hyperbolic 3-manifolds from a given cusped hyperbolic 3-manifold. Hyperbolic Dehn surgery exists only in dimension three and is one which distinguishes hyperbolic geometry in three dimensions from other dimensions. Such an operation is often also called hyperbolic Dehn filling, as Dehn surgery proper refers to a "drill and fill" operation on a link which consists of ''drilling'' out a neighborhood of the link and then ''filling'' back in with solid tori. Hyperbolic Dehn surgery actually only involves "filling". We will generally assume that a hyperbolic 3-manifold is complete. Suppose ''M'' is a cusped hyperbolic 3-manifold with ''n'' cusps. ''M'' can be thought of, topologically, as the interior of a compact manifold with toral boundary. Suppose we have chosen a meridian and longitude for each boundary torus, i.e. simple closed curves that are generators for the fundamental group of the torus. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ordinal Number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally using linearly ordered greek letter variables that include the natural numbers and have the property that every set of ordinals has a least or "smallest" element (this is needed for giving a meaning to "the least unused element"). This more general definition allows us to define an ordinal number \omega (omega) to be the least element that is greater than every natural number, along with ordinal numbers , , etc., which are even greater than . A linear order such that every non-empty subset has a least element is called a well-order. The axiom of choice implies that every set can be well-orde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marc Lackenby
Marc Lackenby is a professor of mathematics at the University of Oxford whose research concerns knot theory, low-dimensional topology, and group theory. Lackenby studied mathematics at the University of Cambridge beginning in 1990, and earned his Ph.D. in 1997, with a dissertation on ''Dehn Surgery and Unknotting Operations'' supervised by W. B. R. Lickorish. After positions as Miller Research Fellow at the University of California, Berkeley and as Research Fellow at Cambridge, he joined Oxford as a Lecturer and Fellow of St Catherine's in 1999. He was promoted to Professor at Oxford in 2006. Lackenby's research contributions include a proof of a strengthened version of the 2 theorem on sufficient conditions for Dehn surgery to produce a hyperbolic manifold, a bound on the hyperbolic volume of a knot complement of an alternating knot, and a proof that every diagram of the unknot can be transformed into a diagram without crossings by only a polynomial number of Reidemeister move ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robion Kirby
Robion Cromwell Kirby (born February 25, 1938) is a Professor of Mathematics at the University of California, Berkeley who specializes in low-dimensional topology. Together with Laurent C. Siebenmann he developed the Kirby–Siebenmann invariant for classifying the piecewise linear structures on a topological manifold. He also proved the fundamental result on the Kirby calculus, a method for describing 3-manifolds and smooth 4-manifolds by surgery on framed links. Along with his significant mathematical contributions, he has over 50 doctoral students and is the editor of an influential problem list. Career He received his Ph.D. from the University of Chicago in 1965, with thesis "Smoothing Locally Flat Imbeddings" written under the direction of . He soon became an assistant professor at UCLA. While there he developed his " torus trick" which enabled him to solve, in dimensions greater than four (with additional joint work with Siebenmann), four of John Milnor's seven ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


De Gruyter
Walter de Gruyter GmbH, known as De Gruyter (), is a German scholarly publishing house specializing in academic literature. History The roots of the company go back to 1749 when Frederick the Great granted the Königliche Realschule in Berlin the royal privilege to open a bookstore and "to publish good and useful books". In 1800, the store was taken over by Georg Reimer (1776–1842), operating as the ''Reimer'sche Buchhandlung'' from 1817, while the school's press eventually became the ''Georg Reimer Verlag''. From 1816, Reimer used a representative palace at Wilhelmstraße 73 in Berlin for his family and the publishing house, whereby the wings contained his print shop and press. The building later served as the Palace of the Reich President. Born in Ruhrort in 1862, Walter de Gruyter took a position with Reimer Verlag in 1894. By 1897, at the age of 35, he had become sole proprietor of the hundred-year-old company then known for publishing the works of German romantic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer-assisted Proof
Automation describes a wide range of technologies that reduce human intervention in processes, mainly by predetermining decision criteria, subprocess relationships, and related actions, as well as embodying those predeterminations in machines. Automation has been achieved by various means including mechanical, hydraulic, pneumatic, electrical, electronic devices, and computers, usually in combination. Complicated systems, such as modern factories, airplanes, and ships typically use combinations of all of these techniques. The benefit of automation includes labor savings, reducing waste, savings in electricity costs, savings in material costs, and improvements to quality, accuracy, and precision. Automation includes the use of various equipment and control systems such as machinery, processes in factories, boilers, and heat-treating ovens, switching on telephone networks, steering, stabilization of ships, aircraft and other applications and vehicles with reduced human ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Grigori Perelman
Grigori Yakovlevich Perelman (, ; born 13June 1966) is a Russian mathematician and geometer who is known for his contributions to the fields of geometric analysis, Riemannian geometry, and geometric topology. In 2005, Perelman resigned from his research post in Steklov Institute of Mathematics and in 2006 stated that he had quit professional mathematics, owing to feeling disappointed over the ethical standards in the field. He lives in seclusion in Saint Petersburg and has declined requests for interviews since 2006. In the 1990s, partly in collaboration with Yuri Burago, Mikhael Gromov, and Anton Petrunin, he made contributions to the study of Alexandrov spaces. In 1994, he proved the soul conjecture in Riemannian geometry, which had been an open problem for the previous 20 years. In 2002 and 2003, he developed new techniques in the analysis of Ricci flow, and proved the Poincaré conjecture and Thurston's geometrization conjecture, the former of which had been a famous op ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometrization Conjecture
In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries ( Euclidean, spherical, or hyperbolic). In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by as part of his 24 questions, and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture. Thurston's hyperbolization theorem implies that Haken manifolds satisfy the geometrization conjecture. Thurston ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cameron Gordon (mathematician)
Cameron Gordon (born 1945) is a Professor and Sid W. Richardson Foundation Regents Chair in the Department of Mathematics at the University of Texas at Austin, known for his work in knot theory. Among his notable results is his work with Marc Culler, John Luecke, and Peter Shalen on the cyclic surgery theorem. This was an important ingredient in his work with Luecke showing that knots were determined by their complement. Gordon was also involved in the resolution of the Smith conjecture. Andrew Casson and Gordon defined and proved basic theorems regarding strongly irreducible Heegaard splittings, an important concept in the modernization of Heegaard splitting theory. They also worked on the slice-ribbon conjecture, inventing the Casson-Gordon invariants in the process. Gordon was a 1999 Guggenheim Fellow. In 2005 Gordon was elected a Corresponding Fellow of the Royal Society of Edinburgh. In 2023 Gordon was elected to the National Academy of Sciences. References External li ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


(-2, 3, 7) Pretzel Knot
The symbol , known in Unicode as hyphen-minus, is the form of hyphen most commonly used in digital documents. On most keyboards, it is the only character that resembles a minus sign or a dash, so it is also used for these. The name ''hyphen-minus'' derives from the original ASCII standard, where it was called ''hyphen (minus)''. The character is referred to as a ''hyphen'', a ''minus sign'', or a ''dash'' according to the context where it is being used. Description In early typewriters and character encodings, a single key/code was almost always used for hyphen, minus, various dashes, and strikethrough, since they all have a similar appearance. The current Unicode Standard specifies distinct characters for several different dashes, an unambiguous minus sign (sometimes called the ''Unicode minus'') at code point U+2212, an unambiguous hyphen (sometimes called the ''Unicode hyphen'') at U+2010, the hyphen-minus at U+002D and a variety of other hyphen symbols for various uses. Wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Figure-eight Knot (mathematics)
In knot theory, a figure-eight knot (also called Listing's knot) is the unique knot with a crossing number (knot theory), crossing number of four. This makes it the knot with the third-smallest possible crossing number, after the unknot and the trefoil knot. The figure-eight knot is a prime knot. Origin of name The name is given because tying a normal figure-eight knot in a rope and then joining the ends together, in the most natural way, gives a model of the mathematical knot. Description A simple parametric representation of the figure-eight knot is as the set of all points (''x'',''y'',''z'') where : \begin x & = \left(2 + \cos \right) \cos \\ y & = \left(2 + \cos \right) \sin \\ z & = \sin \end for ''t'' varying over the real numbers (see 2D visual realization at bottom right). The figure-eight knot is Prime knot, prime, alternating knot, alternating, rational knot, rational with an associated value of 5/3, and is Chiral kn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mikhail Gromov (mathematician)
Mikhael Leonidovich Gromov (also Mikhail Gromov, Michael Gromov or Misha Gromov; ; born 23 December 1943) is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of Institut des Hautes Études Scientifiques in France and a professor of mathematics at New York University. Gromov has won several prizes, including the Abel Prize in 2009 "for his revolutionary contributions to geometry". Early years, education and career Mikhail Gromov was born on 23 December 1943 in Boksitogorsk, Soviet Union. His father Leonid Gromov was Russian-Slavic and his mother Lea was of Jewish heritage. Both were pathologists. His mother was the cousin of World Chess Champion Mikhail Botvinnik, as well as of the mathematician Isaak Moiseevich Rabinovich. Gromov was born during World War II, and his mother, who worked as a medical doctor in the Soviet Army, had to leave the front line in order to give birth to him. When Gromov was nine years ol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]