HOME





Hyperbolic 3-manifold
In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group). Hyperbolic 3-manifolds of finite volume have a particular importance in 3-dimensional topology as follows from Thurston's geometrisation conjecture proved by Perelman. The study of Kleinian groups is also an important topic in geometric group theory. Importance in topology Hyperbolic geometry is the most rich and least understood of the eight geometries in dimension 3 (for example, for all other geometries it is not hard to give an explicit enumeration of the finite-volume manifolds with this geometry, while this is far from bein ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperbolic Dehn Surgery
In mathematics, hyperbolic Dehn surgery is an operation by which one can obtain further hyperbolic 3-manifolds from a given cusped hyperbolic 3-manifold. Hyperbolic Dehn surgery exists only in dimension three and is one which distinguishes hyperbolic geometry in three dimensions from other dimensions. Such an operation is often also called hyperbolic Dehn filling, as Dehn surgery proper refers to a "drill and fill" operation on a link which consists of ''drilling'' out a neighborhood of the link and then ''filling'' back in with solid tori. Hyperbolic Dehn surgery actually only involves "filling". We will generally assume that a hyperbolic 3-manifold is complete. Suppose ''M'' is a cusped hyperbolic 3-manifold with ''n'' cusps. ''M'' can be thought of, topologically, as the interior of a compact manifold with toral boundary. Suppose we have chosen a meridian and longitude for each boundary torus, i.e. simple closed curves that are generators for the fundamental group of the torus. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seifert–Weber Space
In mathematics, Seifert–Weber space (introduced by Herbert Seifert and Constantin Weber) is a closed hyperbolic 3-manifold. It is also known as Seifert–Weber dodecahedral space and hyperbolic dodecahedral space. It is one of the first discovered examples of closed hyperbolic 3-manifolds. It is constructed by gluing each face of a dodecahedron to its opposite in a way that produces a closed 3-manifold. There are three ways to do this gluing consistently. Opposite faces are misaligned by 1/10 of a turn, so to match them they must be rotated by 1/10, 3/10 or 5/10 turn; a rotation of 3/10 gives the Seifert–Weber space. Rotation of 1/10 gives the Poincaré homology sphere, and rotation by 5/10 gives 3-dimensional real projective space. With the 3/10-turn gluing pattern, the edges of the original dodecahedron are glued to each other in groups of five. Thus, in the Seifert–Weber space, each edge is surrounded by five pentagonal faces, and the dihedral angle between these pe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solid Angle
In geometry, a solid angle (symbol: ) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the ''apex'' of the solid angle, and the object is said to '' subtend'' its solid angle at that point. In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a ''steradian'' (symbol: sr), which is equal to one square radian, sr = rad2. One steradian corresponds to one unit of area (of any shape) on the unit sphere surrounding the apex, so an object that blocks all rays from the apex would cover a number of steradians equal to the total surface area of the unit sphere, 4\pi. Solid angles can also be measured in squares of angular measures such as degrees, minutes, and seconds. A small object nearby may subtend the same solid angle as a larger object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient Space (topology)
In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space. Intuitively speaking, the points of each equivalence class are or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space. Definition Let X be a topological space, and let \sim be an equivalence relation on X. The quotient set Y = X/ is the set of equivalence classes of elements of X. The e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an -dimensional polytope or -polytope. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. In this context, "flat sides" means that the sides of a -polytope consist of -polytopes that may have -polytopes in common. Some theories further generalize the idea to include such objects as unbounded apeirotopes and tessellations, decompositions or tilings of curved manifolds including spherical polyhedra, and set-theoretic abstract polytopes. Polytopes of more than three dimensions were first discovered by Ludwig Schläfli before 1853, who called such a figure a polyschem. The German term ''Polytop'' was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ending Lamination Theorem
In hyperbolic geometry, the ending lamination theorem, originally conjectured by as the eleventh problem out of his twenty-four questions, states that hyperbolic 3-manifolds with finitely generated fundamental groups are determined by their topology together with certain "end invariants", which are geodesic laminations on some surfaces in the boundary of the manifold. The ending lamination theorem is a generalization of the Mostow rigidity theorem to hyperbolic manifolds of infinite volume. When the manifold is compact or of finite volume, the Mostow rigidity theorem states that the fundamental group determines the manifold. When the volume is infinite the fundamental group is not enough to determine the manifold: one also needs to know the hyperbolic structure on the surfaces at the "ends" of the manifold, and also the ending laminations on these surfaces. and proved the ending lamination conjecture for Kleinian surface groups. In view of the Tameness theorem this implies ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tameness Theorem
In mathematics, the tameness theorem states that every complete hyperbolic 3-manifold with finitely generated fundamental group is topologically tame, in other words homeomorphic to the interior of a compact 3-manifold. The tameness theorem was conjectured by . It was proved by and, independently, by Danny Calegari and David Gabai. It is one of the fundamental properties of geometrically infinite hyperbolic 3-manifolds, together with the density theorem for Kleinian groups and the ending lamination theorem. It also implies the Ahlfors measure conjecture. History Topological tameness may be viewed as a property of the ends of the manifold, namely, having a local product structure. An analogous statement is well known in two dimensions, that is, for surfaces. However, as the example of Alexander horned sphere shows, there are wild embeddings among , so this property is not automatic. The conjecture was raised in the form of a question by Albert Marden, who proved that any ''g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometrically Finite
In geometry, a group (mathematics), group of isometry, isometries of hyperbolic space is called geometrically finite if it has a well-behaved fundamental domain. A hyperbolic manifold is called geometrically finite if it can be described in terms of geometrically finite groups. Geometrically finite polyhedra A convex polytope, convex polyhedron ''C'' in hyperbolic space is called geometrically finite if its closure in the conformal compactification of hyperbolic space has the following property: *For each point ''x'' in , there is a neighborhood (mathematics), neighborhood ''U'' of ''x'' such that all faces of meeting ''U'' also pass through ''x'' . For example, every polyhedron with a finite number of faces is geometrically finite. In hyperbolic space of dimension at most 2, every geometrically finite polyhedron has a finite number of sides, but there are geometrically finite polyhedra in dimensions 3 and above with infinitely many sides. For example, in Euclidean s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cusp Neighbourhood
In mathematics, a cusp neighborhood is defined as a set of points near a cusp singularity. Cusp neighborhood for a Riemann surface The cusp neighborhood for a hyperbolic Riemann surface can be defined in terms of its Fuchsian model. Suppose that the Fuchsian group ''G'' contains a parabolic element g. For example, the element ''t'' ∈ SL(2,Z) where :t(z)=\begin 1 & 1 \\ 0 & 1 \end:z = \frac = z+1 is a parabolic element. Note that all parabolic elements of SL(2,C) are conjugate to this element. That is, if ''g'' ∈ SL(2,Z) is parabolic, then g=h^th for some ''h'' ∈ SL(2,Z). The set :U=\ where H is the upper half-plane has :\gamma(U) \cap U = \emptyset for any \gamma \in G - \langle g \rangle where \langle g \rangle is understood to mean the group generated by ''g''. That is, γ acts properly discontinuously on ''U''. Because of this, it can be seen that the projection of ''U'' onto H/''G'' is thus :E = U/ \langle g \rangle. Here, ''E'' is called the neighborho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Thick-thin Decomposition
In differential geometry, the Margulis lemma (named after Grigory Margulis) is a result about discrete subgroups of isometries of a non-positively curved Riemannian manifold (e.g. the hyperbolic n-space). Roughly, it states that within a fixed radius, usually called the Margulis constant, the structure of the orbits of such a group cannot be too complicated. More precisely, within this radius around a point all points in its orbit are in fact in the orbit of a nilpotent subgroup (in fact a bounded finite number of such). The Margulis lemma for manifolds of non-positive curvature Formal statement The Margulis lemma can be formulated as follows. Let X be a simply-connected manifold of non-positive bounded sectional curvature. There exist constants C, \varepsilon>0 with the following property. For any discrete subgroup \Gamma of the group of isometries of X and any x \in X, if F_x is the set: : F_x = \ then the subgroup generated by F_x contains a nilpotent subgroup of index l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]