Horocycle
In hyperbolic geometry, a horocycle ( from Greek roots meaning "boundary circle"), sometimes called an oricycle or limit circle, is a curve of constant curvature where all the perpendicular geodesics ( normals) through a point on a horocycle are limiting parallel, and all converge asymptotically to a single ideal point called the '' centre'' of the horocycle. In some models of hyperbolic geometry, it looks like the two "ends" of a horocycle get closer and closer to each other and closer to its centre, but this is not true; the two "ends" of a horocycle get further and further away from each other and stay at an infinite distance off its centre. A horosphere is the 3-dimensional version of a horocycle. In Euclidean space, all curves of constant curvature are either straight lines (geodesics) or circles, but in a hyperbolic space of sectional curvature -1, the curves of constant curvature come in four types: geodesics with curvature \kappa = 0, hypercycles with curvature 0 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Horocycle Normals
In hyperbolic geometry, a horocycle ( from Greek roots meaning "boundary circle"), sometimes called an oricycle or limit circle, is a curve of constant curvature where all the perpendicular geodesics ( normals) through a point on a horocycle are limiting parallel, and all converge asymptotically to a single ideal point called the ''centre'' of the horocycle. In some models of hyperbolic geometry, it looks like the two "ends" of a horocycle get closer and closer to each other and closer to its centre, but this is not true; the two "ends" of a horocycle get further and further away from each other and stay at an infinite distance off its centre. A horosphere is the 3-dimensional version of a horocycle. In Euclidean space, all curves of constant curvature are either straight lines (geodesics) or circles, but in a hyperbolic space of sectional curvature -1, the curves of constant curvature come in four types: geodesics with curvature \kappa = 0, hypercycles with curvature 0 < , \ka ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) The hyperbolic plane is a plane (mathematics), plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudosphere, pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they local property, locally resemble the hyperbolic plane. The hyperboloid model of hyperbolic geometry provides a representation of event (relativity ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poincaré Disk Model
In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or diameters of the unit circle. The group of orientation preserving isometries of the disk model is given by the projective special unitary group , the quotient of the special unitary group SU(1,1) by its center . Along with the Klein model and the Poincaré half-space model, it was proposed by Eugenio Beltrami who used these models to show that hyperbolic geometry was equiconsistent with Euclidean geometry. It is named after Henri Poincaré, because his rediscovery of this representation fourteen years later became better known than the original work of Beltrami. The Poincaré ball model is the similar model for ''3'' or ''n''-dimensional hyperbolic geometry in which the points of the geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Horosphere
In hyperbolic geometry, a horosphere (or parasphere) is a specific hypersurface in hyperbolic ''n''-space. It is the boundary of a horoball, the limit of a sequence of increasing balls sharing (on one side) a tangent hyperplane and its point of tangency. For ''n'' = 2 a horosphere is called a horocycle. A horosphere can also be described as the limit of the hyperspheres that share a tangent hyperplane at a given point, as their radii go towards infinity. In Euclidean geometry, such a "hypersphere of infinite radius" would be a hyperplane, but in hyperbolic geometry it is a horosphere (a curved surface). History The concept has its roots in a notion expressed by F. L. Wachter in 1816 in a letter to his teacher Gauss. Noting that in Euclidean geometry the limit of a sphere as its radius tends to infinity is a plane, Wachter affirmed that even if the fifth postulate were false, there would nevertheless be a geometry on the surface identical with that of the ordinary plane. The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypercycle (geometry)
In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis). Given a straight line and a point not on , one can construct a hypercycle by taking all points on the same side of as , with perpendicular distance to equal to that of . The line is called the ''axis'', ''center'', or ''base line'' of the hypercycle. The lines perpendicular to , which are also perpendicular to the hypercycle, are called the '' normals'' of the hypercycle. The segments of the normals between and the hypercycle are called the ''radii''. Their common length is called the ''distance'' or ''radius'' of the hypercycle. The hypercycles through a given point that share a tangent through that point converge towards a horocycle as their distances go towards infinity. Properties similar to those of Euclidean lines Hypercycles in hyperbolic geometry have some properties similar to those of lines i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ideal Point
In hyperbolic geometry, an ideal point, omega point or point at infinity is a well-defined point outside the hyperbolic plane or space. Given a line ''l'' and a point ''P'' not on ''l'', right- and left-limiting parallels to ''l'' through ''P'' converge to ''l'' at ''ideal points''. Unlike the projective case, ideal points form a boundary, not a submanifold. So, these lines do not intersect at an ideal point and such points, although well-defined, do not belong to the hyperbolic space itself. The ideal points together form the Cayley absolute or boundary of a hyperbolic geometry. For instance, the unit circle forms the Cayley absolute of the Poincaré disk model and the Klein disk model. The real line forms the Cayley absolute of the Poincaré half-plane model. Pasch's axiom and the exterior angle theorem still hold for an omega triangle, defined by two points in hyperbolic space and an omega point. Properties * The hyperbolic distance between an ideal point and any other ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Limiting Parallel
In neutral or absolute geometry, and in hyperbolic geometry, there may be many lines parallel to a given line l through a point P not on line R; however, in the plane, two parallels may be closer to l than all others (one in each direction of R). Thus it is useful to make a new definition concerning parallels in neutral geometry. If there are closest parallels to a given line they are known as the limiting parallel, asymptotic parallel or horoparallel (horo from — border). For rays, the relation of limiting parallel is an equivalence relation, which includes the equivalence relation of being coterminal. If, in a hyperbolic triangle, the pairs of sides are limiting parallel, then the triangle is an ideal triangle. Definition A ray Aa is a limiting parallel to a ray Bb if they are coterminal or if they lie on distinct lines not equal to the line AB, they do not meet, and every ray in the interior of the angle BAa meets the ray Bb. Properties Distinct lines carrying lim ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinity
Infinity is something which is boundless, endless, or larger than any natural number. It is denoted by \infty, called the infinity symbol. From the time of the Ancient Greek mathematics, ancient Greeks, the Infinity (philosophy), philosophical nature of infinity has been the subject of many discussions among philosophers. In the 17th century, with the introduction of the infinity symbol and the infinitesimal calculus, mathematicians began to work with infinite series and what some mathematicians (including Guillaume de l'Hôpital, l'Hôpital and Johann Bernoulli, Bernoulli) regarded as infinitely small quantities, but infinity continued to be associated with endless processes. As mathematicians struggled with the foundation of calculus, it remained unclear whether infinity could be considered as a number or Magnitude (mathematics), magnitude and, if so, how this could be done. At the end of the 19th century, Georg Cantor enlarged the mathematical study of infinity by studying ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
E (mathematical Constant)
The number is a mathematical constant approximately equal to 2.71828 that is the base of a logarithm, base of the natural logarithm and exponential function. It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted \gamma. Alternatively, can be called Napier's constant after John Napier. The Swiss mathematician Jacob Bernoulli discovered the constant while studying compound interest. The number is of great importance in mathematics, alongside 0, 1, Pi, , and . All five appear in one formulation of Euler's identity e^+1=0 and play important and recurring roles across mathematics. Like the constant , is Irrational number, irrational, meaning that it cannot be represented as a ratio of integers, and moreover it is Transcendental number, transcendental, meaning that it is not a root of any non-zero polynomial with rational coefficie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Functions
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola. Also, similarly to how the derivatives of and are and respectively, the derivatives of and are and respectively. Hyperbolic functions are used to express the angle of parallelism in hyperbolic geometry. They are used to express Lorentz boosts as hyperbolic rotations in special relativity. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, and fluid dynamics. The basic hyperbolic functions are: * hyperbolic sine "" (), * hyperbolic cosine "" (),''Collins Concise Dictionary'', p. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaussian Curvature
In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For example, a sphere of radius has Gaussian curvature everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus. Gaussian curvature is an ''intrinsic'' measure of curvature, meaning that it could in principle be measured by a 2-dimensional being living entirely within the surface, because it depends only on distances that are measured “within” or along the surface, not on the way it is isometrically embedding, embedded in Euclidean space. This is the content of the ''Theorema Egregium''. Gaussian curvature is named after Carl Friedrich Gauss, who published the ''Theorema Egregium'' in 1827. Informal definit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |