Gas Dynamics
Compressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case).Anderson, J.D., ''Fundamentals of Aerodynamics'', 4th Ed., McGraw–Hill, 2007. The study of compressible flow is relevant to highspeed aircraft, jet engines, rocket motors, highspeed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields. History The study of gas dynamics is often associated with the flight of modern highspeed aircraft and atmospheric reentry of spaceexploration vehicles; however, its origins lie with simpler machines. At the beginning of the 19th century, investigation into the behaviour of fired bullets led to ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Fluid Mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids ( liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and biomedical engineering, geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion. It is a branch of continuum mechanics, a subject which models matter without using the information that it is made out of atoms; that is, it models matter from a ''macroscopic'' viewpoint rather than from ''microscopic''. Fluid mechanics, especially fluid dynamics, is an active field of research, typically mathematically complex. Many problems are partly or wholly unsolved and are best addressed by numerical methods, typically using computers. A modern discipline, called computational fluid dynamics (CFD), is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Chuck Yeager
Brigadier General Charles Elwood Yeager ( , February 13, 1923December 7, 2020) was a United States Air Force officer, flying ace, and recordsetting test pilot who in October 1947 became the first pilot in history confirmed to have exceeded the speed of sound in level flight. Yeager was raised in Hamlin, West Virginia. His career began in World War II as a private in the United States Army, assigned to the Army Air Forces in 1941. After serving as an aircraft mechanic, in September 1942, he entered enlisted pilot training and upon graduation was promoted to the rank of flight officer (the World War II Army Air Force version of the Army's warrant officer), later achieving most of his aerial victories as a P51 Mustang fighter pilot on the Western Front, where he was credited with shooting down 11.5 enemy aircraft (the half credit is from a second pilot assisting him in a single shootdown). On October 12, 1944, he attained " ace in a day" status, shooting down five enemy aircraf ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hypervelocity
Hypervelocity is very high velocity, approximately over 3,000 meters per second (6,700 mph, 11,000 km/h, 10,000 ft/s, or Mach 8.8). In particular, hypervelocity is velocity so high that the strength of materials upon impact is very small compared to inertial stresses. Thus, metals and fluids behave alike under hypervelocity impact. Extreme hypervelocity results in vaporization of the impactor and target. For structural metals, hypervelocity is generally considered to be over 2,500 m/s (5,600 mph, 9,000 km/h, 8,200 ft/s, or Mach 7.3). Meteorite craters are also examples of hypervelocity impacts. Overview The term "hypervelocity" refers to velocities in the range from a few kilometers per second to some tens of kilometers per second. This is especially relevant in the field of space exploration and military use of space, where hypervelocity impacts (e.g. by space debris or an attacking projectile) can result in anything from minor com ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hypersonic
In aerodynamics, a hypersonic speed is one that exceeds 5 times the speed of sound, often stated as starting at speeds of Mach 5 and above. The precise Mach number at which a craft can be said to be flying at hypersonic speed varies, since individual physical changes in the airflow (like molecular dissociation and ionization) occur at different speeds; these effects collectively become important around Mach 510. The hypersonic regime can also be alternatively defined as speeds where specific heat capacity changes with the temperature of the flow as kinetic energy of the moving object is converted into heat. Characteristics of flow While the definition of hypersonic flow can be quite vague and is generally debatable (especially due to the absence of discontinuity between supersonic and hypersonic flows), a hypersonic flow may be characterized by certain physical phenomena that can no longer be analytically discounted as in supersonic flow. The peculiarity in hypersonic flows ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Supersonic
Supersonic speed is the speed of an object that exceeds the speed of sound ( Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately . Speeds greater than five times the speed of sound (Mach 5) are often referred to as hypersonic. Flights during which only some parts of the air surrounding an object, such as the ends of rotor blades, reach supersonic speeds are called transonic. This occurs typically somewhere between Mach 0.8 and Mach 1.2. Sounds are traveling vibrations in the form of pressure waves in an elastic medium. Objects move at supersonic speed when the objects move faster than the speed at which sound propagates through the medium. In gases, sound travels longitudinally at different speeds, mostly depending on the molecular mass and temperature of the gas, and pressure has little effect. Since air temperature and composition varies significantly with altitude, the speed of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Transonic
Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2. The issue of transonic speed (or transonic region) first appeared during World War II. Pilots found as they approached the sound barrier the airflow caused aircraft to become unsteady. Experts found that shock waves can cause largescale separation downstream, increasing drag and adding asymmetry and unsteadiness to the flow around the vehicle. Research has been done into weakening shock waves in transonic flight through the use of antishock bodies and supercritical airfoils. Most modern jet powered aircraft are engineered to operate at transonic air speeds. Transonic airspeeds see a rapid increase in drag fro ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Leonhard Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of mathematics such as analytic number theory, complex analysis, and infinitesimal calculus. He introduced much of modern mathematical terminology and notation, including the notion of a mathematical function. He is also known for his work in mechanics, fluid dynamics, optics, astronomy and music theory. Euler is held to be one of the greatest mathematicians in history and the greatest of the 18th century. A statement attributed to PierreSimon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is the master of us all." Carl Friedrich Gauss remarked: "The study of Euler's works will remain the best school for the different fields of mathematics, and nothing else can replace it." Euler i ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

JosephLouis Lagrange
JosephLouis Lagrange (born Giuseppe Luigi LagrangiaJosephLouis Lagrange, comte de l’Empire ''Encyclopædia Britannica'' or Giuseppe Ludovico De la Grange Tournier; 25 January 1736 – 10 April 1813), also reported as Giuseppe Luigi Lagrange or Lagrangia, was an Italian and , later naturalized 

Ideal Gas Law
The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and GayLussac's law. The ideal gas law is often written in an empirical form: pV = nRT where p, V and T are the pressure, volume and Thermodynamic temperature, temperature; n is the amount of substance; and R is the ideal gas constant. It can also be derived from the microscopic kinetic theory of gases, kinetic theory, as was achieved (apparently independently) by August Krönig in 1856 and Rudolf Clausius in 1857. Equation The state function, state of an amount of gas is determined by its pressure, volume, and temperature. The modern form of the equation relates these simply in two main forms. The temperature used ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Conservation Of Energy
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes. If one adds up all forms of energy that were released in the explosion, such as the kinetic energy and potential energy of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite. Classically, conservation of energy was distinct from conservation of mass. However, special relativity shows that mass is related to energy and vice versa by ''E = mc2'', and science now takes the view that massenergy as a whole is conserved. Theoretically, this implies that an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Equation Of State
In physics, chemistry, and thermodynamics, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars. Overview At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions. An example of an equation of state correlates densities of gases and liquids to temperatures and pressures, known as the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures. This equation becomes increasingly inaccurate at higher pressures and lower temperatures, and fails to pred ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Noslip Condition
In fluid dynamics, the noslip condition for viscous fluids assumes that at a solid boundary, the fluid will have zero velocity relative to the boundary. The fluid velocity at all fluid–solid boundaries is equal to that of the solid boundary. Conceptually, one can think of the outermost molecules of fluid as stuck to the surfaces past which it flows. Because the solution is prescribed at given locations, this is an example of a Dirichlet boundary condition. Physical justification Particles close to a surface do not move along with a flow when adhesion is stronger than cohesion. At the fluidsolid interface, the force of attraction between the fluid particles and solid particles (Adhesive forces) is greater than that between the fluid particles (Cohesive forces). This force imbalance brings down the fluid velocity to zero. The no slip condition is only defined for viscous flows and where continuum concept is valid. Exceptions As with most of the engineering approximations, the ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 