Ground Formula
   HOME





Ground Formula
In mathematical logic, a ground term of a formal system is a term that does not contain any variables. Similarly, a ground formula is a formula that does not contain any variables. In first-order logic with identity with constant symbols a and b, the sentence Q(a) \lor P(b) is a ground formula. A ground expression is a ground term or ground formula. Examples Consider the following expressions in first order logic over a signature containing the constant symbols 0 and 1 for the numbers 0 and 1, respectively, a unary function symbol s for the successor function and a binary function symbol + for addition. * s(0), s(s(0)), s(s(s(0))), \ldots are ground terms; * 0 + 1, \; 0 + 1 + 1, \ldots are ground terms; * 0+s(0), \; s(0)+ s(0), \; s(0)+s(s(0))+0 are ground terms; * x + s(1) and s(x) are terms, but not ground terms; * s(0) = 1 and 0 + 0 = 0 are ground formulae. Formal definitions What follows is a formal definition for first-order languages. Let a first-order language be gi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Predicate Symbol
In mathematical logic, a predicate variable is a predicate letter which functions as a "placeholder" for a relation (between terms), but which has not been specifically assigned any particular relation (or meaning). Common symbols for denoting predicate variables include capital roman letters such as P, Q and R, or lower case roman letters, e.g., x. In first-order logic, they can be more properly called metalinguistic variables. In higher-order logic, predicate variables correspond to propositional variables which can stand for well-formed formulas of the same logic, and such variables can be quantified by means of (at least) second-order quantifiers. Notation Predicate variables should be distinguished from predicate constants, which could be represented either with a different (exclusive) set of predicate letters, or by their own symbols which really do have their own specific meaning in their domain of discourse: e.g. =, \ \in , \ \le,\ <, \ \sub,... . If letters ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Truth Value
In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values ('' true'' or '' false''). Truth values are used in computing as well as various types of logic. Computing In some programming languages, any expression can be evaluated in a context that expects a Boolean data type. Typically (though this varies by programming language) expressions like the number zero, the empty string, empty lists, and null are treated as false, and strings with content (like "abc"), other numbers, and objects evaluate to true. Sometimes these classes of expressions are called falsy and truthy. For example, in Lisp, nil, the empty list, is treated as false, and all other values are treated as true. In C, the number 0 or 0.0 is false, and all other values are treated as true. In JavaScript, the empty string (""), null, undefined, NaN, +0, −0 and false are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Herbrand Interpretation
In mathematical logic, a Herbrand interpretation is an interpretation in which all constants and function symbols are assigned very simple meanings. Specifically, every constant is interpreted as itself, and every function symbol is interpreted as the application function on terms. The interpretation also defines predicate symbols as denoting a subset of the relevant Herbrand base, effectively specifying which ground atoms are true in the interpretation. This allows the symbols in a set of clauses to be interpreted in a purely syntactic way, separated from any real instantiation. The importance of Herbrand interpretations is that, if there exists an interpretation that satisfies a given set of clauses ''S'' then there is a Herbrand interpretation that satisfies the clauses. Moreover, Herbrand's theorem states that if ''S'' is unsatisfiable then there is a finite unsatisfiable set of ground instances from the Herbrand universe defined by ''S''. Since this set is finite, it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Herbrand Base
In first-order logic, a Herbrand structure S is a structure over a vocabulary \sigma (also sometimes called a ''signature'') that is defined solely by the syntactical properties of \sigma. The idea is to take the symbol strings of terms as their values, e.g. the denotation of a constant symbol c is just "c" (the symbol). It is named after Jacques Herbrand. Herbrand structures play an important role in the foundations of logic programming. Herbrand universe Definition The ''Herbrand universe'' serves as the universe in a ''Herbrand structure''. Example Let L^\sigma, be a first-order language with the vocabulary * constant symbols: c * function symbols: f(\cdot), \, g(\cdot) then the Herbrand universe H of L^\sigma (or of \sigma) is H = \ The relation symbols are not relevant for a Herbrand universe since formulas involving only relations do not correspond to elements of the universe. Formulas consisting only of relations R evaluated at a set of constants or variables cor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Atomic Formula
In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformulas. Atoms are thus the simplest well-formed formulas of the logic. Compound formulas are formed by combining the atomic formulas using the logical connectives. The precise form of atomic formulas depends on the logic under consideration; for propositional logic, for example, a propositional variable is often more briefly referred to as an "atomic formula", but, more precisely, a propositional variable is not an atomic formula but a formal expression that denotes an atomic formula. For predicate logic, the atoms are predicate symbols together with their arguments, each argument being a first-order logic#Formation rules, term. In model theory, atomic formulas are merely string (computer science), strings of symbols with a given signature ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Herbrand Structure
In first-order logic, a Herbrand structure S is a structure over a vocabulary \sigma (also sometimes called a ''signature'') that is defined solely by the syntactical properties of \sigma. The idea is to take the symbol strings of terms as their values, e.g. the denotation of a constant symbol c is just "c" (the symbol). It is named after Jacques Herbrand. Herbrand structures play an important role in the foundations of logic programming. Herbrand universe Definition The ''Herbrand universe'' serves as the universe in a ''Herbrand structure''. Example Let L^\sigma, be a first-order language with the vocabulary * constant symbols: c * function symbols: f(\cdot), \, g(\cdot) then the Herbrand universe H of L^\sigma (or of \sigma) is H = \ The relation symbols are not relevant for a Herbrand universe since formulas involving only relations do not correspond to elements of the universe. Formulas consisting only of relations R evaluated at a set of constants or variables cor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Language
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Formal System
A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms. In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in mathematics. The term ''formalism'' is sometimes a rough synonym for ''formal system'', but it also refers to a given style of notation, for example, Paul Dirac's bra–ket notation. Concepts A formal system has the following: * Formal language, which is a set of well-formed formulas, which are strings of symbols from an alphabet, formed by a formal grammar (consisting of production rules or formation rules). * Deductive system, deductive apparatus, or proof system, which has rules of inference that take axioms and infers theorems, both of which are part of the formal language. A formal system is said to be recursive (i.e. effective) or recursively enumerable if the set of axioms and the set of inference rules are decidable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Signature (mathematical Logic)
In logic, especially mathematical logic, a signature lists and describes the non-logical symbols of a formal language. In universal algebra, a signature lists the operations that characterize an algebraic structure. In model theory, signatures are used for both purposes. They are rarely made explicit in more philosophical treatments of logic. Definition Formally, a (single-sorted) signature can be defined as a 4-tuple \sigma = \left(S_, S_, S_, \operatorname\right), where S_ and S_ are disjoint sets not containing any other basic logical symbols, called respectively * ''function symbols'' (examples: +, \times), * ''s'' or '' predicates'' (examples: \,\leq, \, \in), * '' constant symbols'' (examples: 0, 1), and a function \operatorname : S_ \cup S_ \to \N which assigns a natural number called ''arity'' to every function or relation symbol. A function or relation symbol is called n-ary if its arity is n. Some authors define a nullary (0-ary) function symbol as ''constant symbol'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First Order Logic
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]