Gluing Schemes
In algebraic geometry, a new scheme (e.g. an algebraic variety) can be obtained by gluing existing schemes through gluing maps. Statement Suppose there is a (possibly infinite) family of schemes \_ and for pairs i, j, there are open subsets U_ and isomorphisms \varphi_ : U_ \overset\to U_. Now, if the isomorphisms are compatible in the sense: for each i, j, k, # \varphi_ = \varphi_^, # \varphi_(U_ \cap U_) = U_ \cap U_, # \varphi_ \circ \varphi_ = \varphi_ on U_ \cap U_, then there exists a scheme ''X'', together with the morphisms \psi_i : X_i \to X such that # \psi_i is an isomorphism onto an open subset of ''X'', # X = \cup_i \psi_i(X_i), # \psi_i(U_) = \psi_i(X_i) \cap \psi_j(X_j), # \psi_i = \psi_j \circ \varphi_ on U_. Examples Projective line Let X = \operatorname(k \simeq \mathbb^1, Y = \operatorname(k \simeq \mathbb^1 be two copies of the affine line over a field ''k''. Let X_t = \ = \operatorname(k , t^ be the complement of the origin and Y_u = \ defined simila ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scheme (mathematics)
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise '' Éléments de géométrie algébrique'' (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Schemes elaborate the fundamental idea that an a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the solution set, set of solutions of a system of polynomial equations over the real number, real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly. For example, some definitions require an algebraic variety to be Irreducible component, irreducible, which means that it is not the Union (set theory), union of two smaller Set (mathematics), sets that are Closed set, closed in the Zariski topology. Under this definition, non-irreducible algebraic varieties are called algebraic sets. Other conventions do not require irreducibility. The fundamental theorem of algebra establishes a link between algebra and geometry by showing that a mon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Projective Line
In geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not intersect but seem to intersect "at infinity". For solving this problem, points at infinity have been introduced, in such a way that in a real projective plane, two distinct projective lines meet in exactly one point. The set of these points at infinity, the "horizon" of the visual perspective in the plane, is a real projective line. It is the set of directions emanating from an observer situated at any point, with opposite directions identified. An example of a real projective line is the projectively extended real line, which is often called ''the'' projective line. Formally, a real projective line P(R) is defined as the set of all one-dimensional linear subspaces of a two-dimensional vector space over the reals. The automorphism ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Separated Scheme
In algebraic geometry, given a morphism of schemes p: X \to S, the diagonal morphism :\delta: X \to X \times_S X is a morphism determined by the universal property of the fiber product X \times_S X of ''p'' and ''p'' applied to the identity 1_X : X \to X and the identity 1_X. It is a special case of a graph morphism: given a morphism f: X \to Y over ''S'', the graph morphism of it is X \to X \times_S Y induced by f and the identity 1_X. The diagonal embedding is the graph morphism of 1_X. By definition, ''X'' is a separated scheme over ''S'' (p: X \to S is a separated morphism) if the diagonal morphism is a closed immersion. Also, a morphism p: X \to S locally of finite presentation is an unramified morphism if and only if the diagonal embedding is an open immersion. Explanation As an example, consider an algebraic variety over an algebraically closed field ''k'' and p: X \to \operatorname(k) the structure map. Then, identifying ''X'' with the set of its ''k''-rational points, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Point At Infinity
In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Adjoining these points produces a projective plane, in which no point can be distinguished, if we "forget" which points were added. This holds for a geometry over any field, and more generally over any division ring. In the real case, a point at infinity completes a line into a topologically closed curve. In higher dimensions, all the points at infinity form a projective subspace of one dimension less than that of the whole projective space to which they belong. A point at infinity can also be added to the complex line (which may be thought of as the complex plane), thereby turning it into a closed surface known as the complex projective line, CP1, also called the Riemann sphere (when complex numbers are mapped to each point). In the c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Product Of Algebras
In mathematics, the tensor product of two algebras over a commutative ring ''R'' is also an ''R''-algebra. This gives the tensor product of algebras. When the ring is a field, the most common application of such products is to describe the product of algebra representations. Definition Let ''R'' be a commutative ring and let ''A'' and ''B'' be ''R''-algebras. Since ''A'' and ''B'' may both be regarded as ''R''-modules, their tensor product :A \otimes_R B is also an ''R''-module. The tensor product can be given the structure of a ring by defining the product on elements of the form by :(a_1\otimes b_1)(a_2\otimes b_2) = a_1 a_2\otimes b_1b_2 and then extending by linearity to all of . This ring is an ''R''-algebra, associative and unital with the identity element given by . where 1''A'' and 1''B'' are the identity elements of ''A'' and ''B''. If ''A'' and ''B'' are commutative, then the tensor product is commutative as well. The tensor product turns the category of ''R''-alge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stacks Project
The Stacks Project is an open source collaborative mathematics textbook writing project with the aim to cover "algebraic stacks and the algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ... needed to define them". , the book consists of 116 chapters (excluding the license and index chapters) spreading over 7500 pages. The maintainer of the project, who reviews and accepts the changes, is Aise Johan de Jong. References External linksProject website*Latest from the Stacks Project(as of 2013) (Accessed 1 April 2020)Kerodona Stacks project inspired online textbook on categorical homotopy theory maintained by Jacob Lurie Mathematics textbooks {{mathematics-lit-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |