HOME





Geometry Of Interaction
In proof theory, the Geometry of Interaction (GoI) was introduced by Jean-Yves Girard shortly after his work on linear logic. In linear logic, proofs can be seen as various kinds of networks as opposed to the flat tree structures of sequent calculus. To distinguish the real proof nets from all the possible networks, Girard devised a criterion involving trips in the network. Trips can in fact be seen as some kind of operator acting on the proof. Drawing from this observation, Girard described directly this operator from the proof and has given a formula, the so-called ''execution formula'', encoding the process of cut elimination at the level of operators. Subsequent constructions by Girard proposed variants in which proofs are represented as flows, or operators in von Neumann algebras. Those models were later generalised by Seiller's Interaction Graphs models. One of the first significant applications of GoI was a better analysis of Lamping's algorithm for optimal reduction for th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Proof Theory
Proof theory is a major branchAccording to , proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature. Some of the major areas of proof theory include structural proof theory, ordinal analysis, provability logic, reverse mathematics, proof mining, automated theorem proving, and proof complexity. Much research also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Game Semantics
Game semantics is an approach to Formal semantics (logic), formal semantics that grounds the concepts of truth or Validity (logic), validity on Game theory, game-theoretic concepts, such as the existence of a winning strategy for a player. In this framework, logical formulas are interpreted as defining games between two players. The term encompasses several related but distinct traditions, including dialogical logic (developed by Paul Lorenzen and Kuno Lorenz in Germany starting in the 1950s) and game-theoretical semantics (developed by Jaakko Hintikka in Finland). Game semantics represents a significant departure from traditional Model theory, model-theoretic approaches by emphasizing the dynamic, interactive nature of logical reasoning rather than static truth assignments. It provides intuitive interpretations for various logical systems, including classical logic, intuitionistic logic, linear logic, and modal logic. The approach bears conceptual resemblances to ancient Socratic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Logic In Computer Science
Logic in computer science covers the overlap between the field of logic and that of computer science. The topic can essentially be divided into three main areas: * Theoretical foundations and analysis * Use of computer technology to aid logicians * Use of concepts from logic for computer applications Theoretical foundations and analysis Logic plays a fundamental role in computer science. Some of the key areas of logic that are particularly significant are computability theory (formerly called recursion theory), modal logic and category theory. The theory of computation is based on concepts defined by logicians and mathematicians such as Alonzo Church and Alan Turing. Church first showed the existence of Undecidable problem, algorithmically unsolvable problems using his notion of lambda-definability. Turing gave the first compelling analysis of what can be called a mechanical procedure and Kurt Gödel asserted that he found Turing's analysis "perfect.". In addition some other ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Philosophical Logic
Understood in a narrow sense, philosophical logic is the area of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. Some theorists conceive philosophical logic in a wider sense as the study of the scope and nature of logic in general. In this sense, philosophical logic can be seen as identical to the philosophy of logic, which includes additional topics like how to define logic or a discussion of the fundamental concepts of logic. The current article treats philosophical logic in the narrow sense, in which it forms one field of inquiry within the philosophy of logic. An important issue for philosophical logic is the question of how to classify the great variety of non-classical logical systems, many of which are of rather recent origin. One form of classification often found in the literature is to distinguish between extended logics and deviant logics. Logic itself can be defined as t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Proof Theory
Proof theory is a major branchAccording to , proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. consists of four corresponding parts, with part D being about "Proof Theory and Constructive Mathematics". of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature. Some of the major areas of proof theory include structural proof theory, ordinal analysis, provability logic, reverse mathematics, proof mining, automated theorem proving, and proof complexity. Much research also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Higher-order Programming
Higher-order programming is a style of computer programming that uses software components, like functions, modules or objects, as values. It is usually instantiated with, or borrowed from, models of computation such as lambda calculus which make heavy use of higher-order functions. A programming language can be considered higher-order if components, such as procedures or labels, can be used just like data. For example, these elements could be used in the same way as arguments or values. For example, in higher-order programming, one can pass functions as arguments to other functions and functions can be the return value of other functions (such as in macros or for interpreting). This style of programming is mostly used in functional programming, but it can also be very useful in object-oriented programming. A slightly different interpretation of higher-order programming in the context of object-oriented programming are higher order messages, which let messages have other mess ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Lambda Calculi
In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computation based on function abstraction and application using variable binding and substitution. Untyped lambda calculus, the topic of this article, is a universal machine, a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was logically consistent, and documented it in 1940. Lambda calculus consists of constructing lambda terms and performing reduction operations on them. A term is defined as any valid lambda calculus expression. In the simplest form of lambda calculus, terms are built using only the following rules: # x: A variable is a character or string representing a parameter. # (\lambda x.M): A lambda abstraction is a function definition, taking as input t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Compiler Optimisation
In computing, a compiler is a computer program that Translator (computing), translates computer code written in one programming language (the ''source'' language) into another language (the ''target'' language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a lower level language, low-level programming language (e.g. assembly language, object code, or machine code) to create an executable program.Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman - Second Edition, 2007 There are many different types of compilers which produce output in different useful forms. A ''cross-compiler'' produces code for a different Central processing unit, CPU or operating system than the one on which the cross-compiler itself runs. A ''bootstrap compiler'' is often a temporary compiler, used for compiling a more permanent or better optimised compiler for a language. Related software ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Realizability
In mathematical logic, realizability is a collection of methods in proof theory used to study constructive proofs and extract additional information from them. Formulas from a formal theory are "realized" by objects, known as "realizers", in a way that knowledge of the realizer gives knowledge about the truth of the formula. There are many variations of realizability; exactly which class of formulas is studied and which objects are realizers differ from one variation to another. Realizability can be seen as a formalization of the Brouwer–Heyting–Kolmogorov (BHK) interpretation of intuitionistic logic. In realizability the notion of "proof" (which is left undefined in the BHK interpretation) is replaced with a formal notion of "realizer". Most variants of realizability begin with a theorem that any statement that is provable in the formal system being studied is realizable. The realizer, however, usually gives more information about the formula than a formal proof would directly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Programming Language For Computable Functions
In computer science, Programming Computable Functions (PCF), or Programming with Computable Functions, or Programming language for Computable Functions, is a programming language which is typed and based on functional programming, introduced by Gordon Plotkin in 1977, based on prior unpublished material by Dana Scott. It can be considered as an extended version of the typed lambda calculus, or a simplified version of modern typed functional languages such as ML or Haskell. A fully abstract model for PCF was first given by Robin Milner. However, since Milner's model was essentially based on the syntax of PCF it was considered less than satisfactory. The first two fully abstract models not employing syntax were formulated during the 1990s. These models are based on game semantics and Kripke logical relations. For a time it was felt that neither of these models was completely satisfactory, since they were not effectively presentable. However, Ralph Loader demonstrated that no effect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Lambda Calculus
In mathematical logic, the lambda calculus (also written as ''λ''-calculus) is a formal system for expressing computability, computation based on function Abstraction (computer science), abstraction and function application, application using variable Name binding, binding and Substitution (algebra), substitution. Untyped lambda calculus, the topic of this article, is a universal machine, a model of computation that can be used to simulate any Turing machine (and vice versa). It was introduced by the mathematician Alonzo Church in the 1930s as part of his research into the foundations of mathematics. In 1936, Church found a formulation which was #History, logically consistent, and documented it in 1940. Lambda calculus consists of constructing #Lambda terms, lambda terms and performing #Reduction, reduction operations on them. A term is defined as any valid lambda calculus expression. In the simplest form of lambda calculus, terms are built using only the following rules: # x: A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Jean-Yves Girard
Jean-Yves Girard (; born 1947) is a French logician working in proof theory. He is a research director (emeritus) at the mathematical institute of University of Aix-Marseille, at Luminy. Biography Jean-Yves Girard is an alumnus of the École normale supérieure de Saint-Cloud. He made a name for himself in the 1970s with his proof of strong normalization in a system of second-order logic called System F. This result gave a new proof of Takeuti's conjecture, which was proven a few years earlier by William W. Tait, Motō Takahashi and Dag Prawitz. For this purpose, he introduced the notion of "reducibility candidate" ("candidat de réducibilité"). He is also credited with the discovery of Girard's paradox, linear logic, the geometry of interaction, ludics, and (satirically) the mustard watch. He obtained the CNRS Silver Medal in 1983 and is a member of the French Academy of Sciences. Bibliography * * * * Jean-Yves Girard (2011). ''The Blind Spot: Lectures on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]