Generalized Hypergeometric Series
In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by ''n'' is a rational function of ''n''. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series. Generalized hypergeometric functions include the (Gaussian) hypergeometric function and the confluent hypergeometric function as special cases, which in turn have many particular special functions as special cases, such as elementary functions, Bessel functions, and the classical orthogonal polynomials. Notation A hypergeometric series is formally defined as a power series :\beta_0 + \beta_1 z + \beta_2 z^2 + \dots = \sum_ \beta_n z^n in which the ratio of successive coefficients is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plot Of The Generalized Hypergeometric Function PFq(a B Z) With A=(2,4,6,8) And B=(2,3,5,7,11) In The Complex Plane From -2-2i To 2+2i Created With Mathematica 13
Plot or Plotting may refer to: Art, media and entertainment * Plot (narrative), the connected story elements of a piece of fiction Music * The Plot (album), ''The Plot'' (album), a 1976 album by jazz trumpeter Enrico Rava * The Plot (band), a band formed in 2003 Other * Plot (film), ''Plot'' (film), a 1973 French-Italian film * Plotting (video game), ''Plotting'' (video game), a 1989 Taito puzzle video game, also called Flipull * The Plot (video game), ''The Plot'' (video game), a platform game released in 1988 for the Amstrad CPC and Sinclair Spectrum * Plotting (non-fiction), ''Plotting'' (non-fiction), a 1939 book on writing by Jack Woodford * The Plot (novel), ''The Plot'' (novel), a 2021 mystery by Jean Hanff Korelitz * The Plot (card game), a Patience-type card game * The Plot (film), a 2024 South Korean crime thriller film Graphics * Plot (graphics), a graphical technique for representing a data set * Plot (radar), a graphic display that shows all collated data from a shi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pochhammer Symbol
In mathematics, the falling factorial (sometimes called the descending factorial, falling sequential product, or lower factorial) is defined as the polynomial \begin (x)_n = x^\underline &= \overbrace^ \\ &= \prod_^n(x-k+1) = \prod_^(x-k) . \end The rising factorial (sometimes called the Pochhammer function, Pochhammer polynomial, ascending factorial, — A reprint of the 1950 edition by Chelsea Publishing. rising sequential product, or upper factorial) is defined as \begin x^ = x^\overline &= \overbrace^ \\ &= \prod_^n(x+k-1) = \prod_^(x+k) . \end The value of each is taken to be 1 (an empty product) when n=0. These symbols are collectively called factorial powers. The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (x)_n, where is a non-negative integer. It may represent ''either'' the rising or the falling factorial, with different articles and authors using different conventions. Pochhammer himself actually used (x)_n with yet another meaning, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Egorychev Method
The Egorychev method is a collection of techniques introduced by Georgy Egorychev for finding identities among sums of binomial coefficients, Stirling numbers, Bernoulli numbers, Harmonic numbers, Catalan numbers and other combinatorial numbers. The method relies on two observations. First, many identities can be proved by extracting coefficients of generating functions. Second, many generating functions are convergent power series, and coefficient extraction can be done using the Cauchy residue theorem (usually this is done by integrating over a small circular contour enclosing the origin). The sought-for identity can now be found using manipulations of integrals. Some of these manipulations are not clear from the generating function perspective. For instance, the integrand is usually a rational function, and the sum of the residues of a rational function is zero, yielding a new expression for the original sum. The residue at infinity is particularly important in these con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauss's Continued Fraction
In complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions. It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions, as well as some of the more complicated transcendental functions. History Lambert published several examples of continued fractions in this form in 1768, and both Euler and Lagrange investigated similar constructions, but it was Carl Friedrich Gauss who utilized the algebra described in the next section to deduce the general form of this continued fraction, in 1813. Although Gauss gave the form of this continued fraction, he did not give a proof of its convergence properties. Bernhard Riemann and L.W. Thomé obtained partial results, but the final word on the region in which this continued fraction converges was not given until 1901, by Edward Burr Van Vleck. Derivation Let f_0, f_1, f_2, \dots be a sequenc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continued Fraction
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite. Different fields of mathematics have different terminology and notation for continued fraction. In number theory the standard unqualified use of the term continued fraction refers to the special case where all numerators are 1, and is treated in the article simple continued fraction. The present article treats the case where numerators and denominators are sequences \,\ of constants or functions. From the perspective of number theory, these are called generalized continued fraction. From the perspective of complex analysis or numerical analysis, however, they are just standard, and in the present article they will simply be called "continued fraction". Formulation A continued fraction is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ratio Test
In mathematics, the ratio test is a convergence tests, test (or "criterion") for the convergent series, convergence of a series (mathematics), series :\sum_^\infty a_n, where each term is a real number, real or complex number and is nonzero when is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test. The test The usual form of the test makes use of the limit (mathematics), limit The ratio test states that: * if ''L'' 1 then the series divergent series, diverges; * if ''L'' = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case. It is possible to make the ratio test applicable to certain cases where the limit ''L'' fails to exist, if limit superior and limit inferior are used. The test criteria can also be refined so that the test is sometimes conclusive even when ''L'' = 1. More specifically, let ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bilateral Hypergeometric Series
In mathematics, a bilateral hypergeometric series is a series Σ''a''''n'' summed over ''all'' integers ''n'', and such that the ratio :''a''''n''/''a''''n''+1 of two terms is a rational function of ''n''. The definition of the generalized hypergeometric series is similar, except that the terms with negative ''n'' must vanish; the bilateral series will in general have infinite numbers of non-zero terms for both positive and negative ''n''. The bilateral hypergeometric series fails to converge for most rational functions, though it can be analytically continued to a function defined for most rational functions. There are several summation formulas giving its values for special values where it does converge. Definition The bilateral hypergeometric series ''p''H''p'' is defined by :_pH_p(a_1,\ldots,a_p;b_1,\ldots,b_p;z)= _pH_p\left(\begina_1&\ldots&a_p\\b_1&\ldots&b_p\\ \end;z\right)= \sum_^\infty \fracz^n where :(a)_n=a(a+1)(a+2)\cdots(a+n-1)\, is the rising factorial or Pochh ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Space
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of isometries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis. In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold (''M'', ''g'') is said to be symmetric if and only if, for each point ''p'' of ''M'', there exists an isometry of ''M'' fixing ''p'' and acting on the tangent space T_pM as minus the identity (every symmetric space is complete, since any geodesic can be extended indefinitely via symmetri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Zonal Spherical Function
In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group ''G'' with compact subgroup ''K'' (often a maximal compact subgroup) that arises as the matrix coefficient of a ''K''-invariant vector in an irreducible representation of ''G''. The key examples are the matrix coefficients of the ''Principal series representation, spherical principal series'', the irreducible representations appearing in the decomposition of the unitary representation of ''G'' on ''L''2(''G''/''K''). In this case the commutant of ''G'' is generated by the algebra of biinvariant functions on ''G'' with respect to ''K'' acting by right convolution. It is commutative if in addition ''G''/''K'' is a symmetric space, for example when ''G'' is a connected semisimple Lie group with finite centre and ''K'' is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra gene ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Q-analog
In mathematics, a ''q''-analog of a theorem, identity or expression is a generalization involving a new parameter ''q'' that returns the original theorem, identity or expression in the limit as . Typically, mathematicians are interested in ''q''-analogs that arise naturally, rather than in arbitrarily contriving ''q''-analogs of known results. The earliest ''q''-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. ''q''-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit is often formal, as is often discrete-valued (for example, it may represent a prime power). ''q''-analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic dynamical systems. The relationship to fractals and dynamical systems results from the fact that many fractal patterns have the symme ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Basic Hypergeometric Series
In mathematics, basic hypergeometric series, or ''q''-hypergeometric series, are q-analog, ''q''-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series ''x''''n'' is called hypergeometric if the ratio of successive terms ''x''''n''+1/''x''''n'' is a rational function of ''n''. If the ratio of successive terms is a rational function of ''q''''n'', then the series is called a basic hypergeometric series. The number ''q'' is called the base. The basic hypergeometric series _2\phi_1(q^,q^;q^;q,x) was first considered by . It becomes the hypergeometric series F(\alpha,\beta;\gamma;x) in the limit when base q =1. Definition There are two forms of basic hypergeometric series, the unilateral basic hypergeometric series φ, and the more general bilateral basic hypergeometric series ψ. The unilateral basic hypergeometric series is defined as :\;_\phi_k \left[\begin a_1 & a_2 & \ldots & a_ \\ b_1 & b_2 & ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asymptotic Expansion
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function. The theory of asymptotic series was created by Poincaré (and independently by Stieltjes) in 1886. The most common type of asymptotic expansion is a power series in either positive or negative powers. Methods of generating such expansions include the Euler–Maclaurin summation formula and integral transforms such as the Laplace and Mellin transforms. Repeated integration by parts will often lead to an asymptotic expansion. Since a '' convergent'' Taylor s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |