General Dirichlet Series
In the field of mathematical analysis, a general Dirichlet series is an infinite series that takes the form of : \sum_^\infty a_n e^, where a_n, s are complex numbers and \ is a strictly increasing sequence of nonnegative real numbers that tends to infinity. A simple observation shows that an 'ordinary' Dirichlet series : \sum_^\infty \frac, is obtained by substituting \lambda_n=\ln n while a power series : \sum_^\infty a_n (e^)^n, is obtained when \lambda_n=n. Fundamental theorems If a Dirichlet series is convergent at s_0=\sigma_0+t_0i, then it is uniformly convergent in the domain : , \arg(s-s_0), \leq \theta \sigma_0. There are now three possibilities regarding the convergence of a Dirichlet series, i.e. it may converge for all, for none or for some values of ''s''. In the latter case, there exist a \sigma_c such that the series is convergent for \sigma>\sigma_c and divergent for \sigma \operatorname(s_0). A Dirichlet series may converge absolutely for all, for no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boundary (topology)
In topology and mathematics in general, the boundary of a subset of a topological space is the set of points in the Closure (topology), closure of not belonging to the Interior (topology), interior of . An element of the boundary of is called a boundary point of . The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set include \operatorname(S), \operatorname(S), and \partial S. Some authors (for example Willard, in ''General Topology'') use the term frontier instead of boundary in an attempt to avoid confusion with a Manifold#Manifold with boundary, different definition used in algebraic topology and the theory of manifolds. Despite widespread acceptance of the meaning of the terms boundary and frontier, they have sometimes been used to refer to other sets. For example, ''Metric Spaces'' by E. T. Copson uses the term boundary to refer to Felix Hausdorff, Hausdorff's border, which is defined as the intersection ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tom M
Tom or TOM may refer to: * Tom (given name), including a list of people and fictional characters with the name. Arts and entertainment Film and television * ''Tom'' (1973 film), or ''The Bad Bunch'', a blaxploitation film * ''Tom'' (2002 film), a documentary film * ''Tom'' (American TV series), 1994 * ''Tom'' (Spanish TV series), 2003 Music * ''Tom'', a 1970 album by Tom Jones * Tom drum, a musical drum with no snares * Tom (Ethiopian instrument), a plucked lamellophone thumb piano * Tune-o-matic, a guitar bridge design Places * Tom, Oklahoma, US * Tom (Amur Oblast), a river in Russia * Tom (river), in Russia, a right tributary of the Ob Science and technology * A male cat * A male wild turkey * Tom (pattern matching language), a programming language * TOM (psychedelic), a hallucinogen * Text Object Model, a Microsoft Windows programming interface * Theory of mind (ToM), in psychology * Translocase of the outer membrane, a complex of proteins Transportation * ''To ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Edward Charles Titchmarsh
Edward Charles "Ted" Titchmarsh (June 1, 1899 – January 18, 1963) was a leading British mathematician. Education Titchmarsh was educated at King Edward VII School (Sheffield) and Balliol College, Oxford, where he began his studies in October 1917. Career Titchmarsh was known for work in analytic number theory, Fourier analysis and other parts of mathematical analysis. He wrote several classic books in these areas; his book on the Riemann zeta-function was reissued in a 1986 edition edited by Roger Heath-Brown. Titchmarsh was Savilian Professor of Geometry at the University of Oxford from 1932 to 1963. He was a Plenary Speaker at the International Congress of Mathematicians, ICM in 1954 in Amsterdam. He was on the governing body of Abingdon School from 1935-1947. Awards *Fellow of the Royal Society, 1931 *De Morgan Medal, 1953 *Sylvester Medal, 1955 *Berwick Prize winner, 1956 Publications *''The Zeta-Function of Riemann'' (1930); *''Introduction to the Theory of Fourier Int ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to the sum function given by its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable, that is, '' holomorphic functions''. The concept can be extended to functions of several complex variables. Complex analysis is contrasted with real analysis, which dea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Variable (mathematics)
In mathematics, a variable (from Latin language, Latin ) is a Mathematical symbol, symbol, typically a letter, that refers to an unspecified mathematical object. One says colloquially that the variable ''represents'' or ''denotes'' the object, and that any valid candidate for the object is the value (mathematics), value of the variable. The values a variable can take are usually of the same kind, often numbers. More specifically, the values involved may form a Set (mathematics), set, such as the set of real numbers. The object may not always exist, or it might be uncertain whether any valid candidate exists or not. For example, one could represent two integers by the variables and and require that the value of the square of is twice the square of , which in algebraic notation can be written . A definitive proof that this relationship is impossible to satisfy when and are restricted to integer numbers isn't obvious, but it has been known since ancient times and has had a big ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if for every x_0 in its domain, its Taylor series about x_0 converges to the function in some neighborhood of x_0 . This is stronger than merely being infinitely differentiable at x_0 , and therefore having a well-defined Taylor series; the Fabius function provides an example of a function that is infinitely differentiable but not analytic. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \cdots in which the coefficients a_0, a_1, \dots a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Convergence
In mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. Definition More precisely, a series of real numbers \sum_^\infty a_n is said to converge conditionally if \lim_\,\sum_^m a_n exists (as a finite real number, i.e. not \infty or -\infty), but \sum_^\infty \left, a_n\ = \infty. A classic example is the alternating harmonic series given by 1 - + - + - \cdots =\sum\limits_^\infty , which converges to \ln (2), but is not absolutely convergent (see Harmonic series). Bernhard Riemann Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the f ... proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem. Agnew' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formal system ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Absolute Convergence
In mathematics, an infinite series of numbers is said to converge absolutely (or to be absolutely convergent) if the sum of the absolute values of the summands is finite. More precisely, a real or complex series \textstyle\sum_^\infty a_n is said to converge absolutely if \textstyle\sum_^\infty \left, a_n\ = L for some real number \textstyle L. Similarly, an improper integral of a function, \textstyle\int_0^\infty f(x)\,dx, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if \textstyle\int_0^\infty , f(x), dx = L. A convergent series that is not absolutely convergent is called conditionally convergent. Absolute convergence is important for the study of infinite series, because its definition guarantees that a series will have some "nice" behaviors of finite sums that not all convergent series possess. For instance, rearrangements do not change the value of the sum, which is not necessarily true for conditionally converge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cauchy–Hadamard Theorem
In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, but remained relatively unknown until Hadamard rediscovered it. Hadamard's first publication of this result was in 1888; he also included it as part of his 1892 Ph.D. thesis. Theorem for one complex variable Consider the formal power series in one complex variable ''z'' of the form f(z) = \sum_^ c_ (z-a)^ where a, c_n \in \Complex. Then the radius of convergence R of ''f'' at the point ''a'' is given by \frac = \limsup_ \left( , c_ , ^ \right) where denotes the limit superior, the limit as approaches infinity of the supremum of the sequence values after the ''n''th position. If the sequence values is unbounded so that the is ∞, then the power series does not converge near , while if the is 0 then the radius of convergence i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |