Fundamental Theorem Of Algebra
The fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non constant singlevariable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero. Equivalently (by definition), the theorem states that the field of complex numbers is algebraically closed. The theorem is also stated as follows: every nonzero, singlevariable, degree ''n'' polynomial with complex coefficients has, counted with multiplicity, exactly ''n'' complex roots. The equivalence of the two statements can be proven through the use of successive polynomial division. Despite its name, there is no purely algebraic proof of the theorem, since any proof must use some form of the analytic completeness of the real numbers, which is not an algebraic concept. Additionally, it is not fundamental for modern ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Constant Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positiveinteger powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' joins ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Theory Of Equations
In algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equations defined by a polynomial. The main problem of the theory of equations was to know when an algebraic equation has an algebraic solution. This problem was completely solved in 1830 by Évariste Galois, by introducing what is now called Galois theory. Before Galois, there was no clear distinction between the "theory of equations" and "algebra". Since then algebra has been dramatically enlarged to include many new subareas, and the theory of algebraic equations receives much less attention. Thus, the term "theory of equations" is mainly used in the context of the history of mathematics, to avoid confusion between old and new meanings of "algebra". History Until the end of the 19th century, "theory of equations" was almost synonymous with "algebra". For a long time, the main problem was to find the solutions of a single nonlinear polynomial equation in ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Alexander Ostrowski
Alexander Markowich Ostrowski ( uk, Олександр Маркович Островський; russian: Алекса́ндр Ма́ркович Остро́вский; 25 September 1893, in Kiev, Russian Empire – 20 November 1986, in Montagnola, Lugano, Switzerland) was a mathematician. His father Mark having been a merchant, Alexander Ostrowski attended the Kiev College of Commerce, not a high school, and thus had an insufficient qualification to be admitted to university. However, his talent did not remain undetected: Ostrowski's mentor, Dmitry Grave, wrote to Landau and Hensel for help. Subsequently, Ostrowski began to study mathematics at Marburg University under Hensel's supervision in 1912. During World War I he was interned, but thanks to the intervention of Hensel, the restrictions on his movements were eased somewhat, and he was allowed to use the university library. After the war ended Ostrowski moved to Göttingen where he wrote his doctoral dissertation an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Carl Friedrich Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes referred to as the ''Princeps mathematicorum'' () and "the greatest mathematician since antiquity", Gauss had an exceptional influence in many fields of mathematics and science, and he is ranked among history's most influential mathematicians. Also available at Retrieved 23 February 2014. Comprehensive biographical article. Biography Early years Johann Carl Friedrich Gauss was born on 30 April 1777 in Brunswick (Braunschweig), in the Duchy of BrunswickWolfenbüttel (now part of Lower Saxony, Germany), to poor, workingclass parents. His mother was illiterate and never recorded the date of his birth, remembering only that he had been born on a Wednesday, eight days before the Feast of the Ascension (which occurs 39 days after Easter). Ga ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

James Wood (mathematician)
James Wood (14 December 1760 – 23 April 1839) was a mathematician, and Master of St John's College, Cambridge. In his later years he was Dean of Ely. Life Wood was born in Holcombe, Bury where his father ran an evening school and taught his son the elements of arithmetic and algebra. From Bury Grammar School he proceeded to St John's College, Cambridge in 1778, graduating as senior wrangler in 1782. On graduating he became a fellow of the college and in his long tenure there produced several successful academic textbooks for students of mathematics. Between 1795 and 1799 his ''The principles of mathematics and natural philosophy'', was printed, in four volumes, by J. Burges. Vol.I: 'The elements of algebra', by Wood; Vol.II: 'The principles of fluxions' by Samuel Vince; Vol.III Part I: 'The principles of mechanics" by Wood; and Vol.III Part II: "The principles of hydrostatics" by Samuel Vince; Vol.IV "The principles of astronomy" by Samuel Vince. Three other volumes " ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Splitting Field
In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a polynomial ''p''(''X'') over a field ''K'' is a field extension ''L'' of ''K'' over which ''p'' factors into linear factors :p(X) = c\prod_^ (X  a_i) where c\in K and for each i we have X  a_i \in L /math> with ''ai'' not necessarily distinct and such that the roots ''ai'' generate ''L'' over ''K''. The extension ''L'' is then an extension of minimal degree over ''K'' in which ''p'' splits. It can be shown that such splitting fields exist and are unique up to isomorphism. The amount of freedom in that isomorphism is known as the Galois group of ''p'' (if we assume it is separable). Properties An extension ''L'' which is a splitting field for a set of polynomials ''p''(''X'') over ''K'' is called a normal extension of ''K''. Given an ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

PierreSimon Laplace
PierreSimon, marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized and extended the work of his predecessors in his fivevolume ''Mécanique céleste'' (''Celestial Mechanics'') (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems. In statistics, the Bayesian interpretation of probability was developed mainly by Laplace. Laplace formulated Laplace's equation, and pioneered the Laplace transform which appears in many branches of mathematical physics, a field that he took a leading role in forming. The Laplacian differential operator, widely used in mathematics, is also named after him. He restated and developed the nebular hypothesis of the origin of the Solar System and was one of the first scientists to sug ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Joseph Louis Lagrange
JosephLouis Lagrange (born Giuseppe Luigi LagrangiaJosephLouis Lagrange, comte de l’Empire ''Encyclopædia Britannica'' or Giuseppe Ludovico De la Grange Tournier; 25 January 1736 – 10 April 1813), also reported as Giuseppe Luigi Lagrange or Lagrangia, was an Italian and , later naturalized 

François Daviet De Foncenex
François Daviet (17341799) was a military officer and mathematician from Savoy in the 18th century. The family name is sometimes also reported in original sources as Daviet de Foncenex, probably from the original village of the family. Life and work Little is known about his life. Born in Savoy, he studied in the '' Accademia di Torino'' under the professorship of Lagrange, two years younger than him. In 1759 he was named member of the ''Accademia delle Scienze di Torino''. He was appointed lieutenant in the army of the Kingdom of Sardinia (the king of Sardinia was the ruler of the Duchy of Savoy) and after some promotions in the army, he was governor of Sassari (1790–91) and of VillefranchesurMer. In 1792 he participated in the wars against French revolutionary army, and he was judged by treason and imprisoned for one year. Daviet published in the years 17591760 two important papers in the journal of the Academy, ''Miscellanea Taurinensis'': the first one (1759) about ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Puiseux's Theorem
In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series : \begin x^ &+ 2x^ + x^ + 2x^ + x^ + x^5 + \cdots\\ &=x^+ 2x^ + x^ + 2x^ + x^ + x^ + \cdots \end is a Puiseux series in the indeterminate . Puiseux series were first introduced by Isaac Newton in 1676 and rediscovered by Victor Puiseux in 1850.Puiseux (1850, 1851) The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominator , a Puiseux series becomes a Laurent series in a th root of the indeterminate. For example, the example above is a Laurent series in x^. Because a complex number has th roots, a convergent Puiseux series typically defines functions in a neighborhood of . Puiseux's theorem, sometimes also called the Newton–Puiseux theorem, asserts that, given a polynomial equation P(x,y)=0 with complex coefficient ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Jean Le Rond D'Alembert
JeanBaptiste le Rond d'Alembert (; ; 16 November 1717 – 29 October 1783) was a French mathematician, mechanician, physicist, philosopher, and music theorist. Until 1759 he was, together with Denis Diderot, a coeditor of the '' Encyclopédie''. D'Alembert's formula for obtaining solutions to the wave equation is named after him. The wave equation is sometimes referred to as d'Alembert's equation, and the fundamental theorem of algebra is named after d'Alembert in French. Early years Born in Paris, d'Alembert was the natural son of the writer Claudine Guérin de Tencin and the chevalier LouisCamus Destouches, an artillery officer. Destouches was abroad at the time of d'Alembert's birth. Days after birth his mother left him on the steps of the church. According to custom, he was named after the patron saint of the church. D'Alembert was placed in an orphanage for foundling children, but his father found him and placed him with the wife of a glazier, Madame Rousseau, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Leonhard Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of mathematics such as analytic number theory, complex analysis, and infinitesimal calculus. He introduced much of modern mathematical terminology and notation, including the notion of a mathematical function. He is also known for his work in mechanics, fluid dynamics, optics, astronomy and music theory. Euler is held to be one of the greatest mathematicians in history and the greatest of the 18th century. A statement attributed to PierreSimon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is the master of us all." Carl Friedrich Gauss remarked: "The study of Euler's works will remain the best school for the different fields of mathematics, and nothing else can replace it." ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 