HOME
*



picture info

Fractal String
An ordinary fractal string \Omega is a bounded, open subset of the real number line. Such a subset can be written as an at-most-countable union of connected open intervals with associated lengths \mathcal=\ written in non-increasing order; we also refer to \mathcal as a fractal string. For example, \mathcal=\left\ is a fractal string corresponding to the Cantor set. A fractal string is the analogue of a one-dimensional "fractal drum," and typically the set \Omega has a boundary \partial\Omega which corresponds to a fractal such as the Cantor set. The heuristic idea of a fractal string is to study a (one-dimensional) fractal using the "space around the fractal." It turns out that the sequence of lengths \mathcal of the set itself is "intrinsic," in the sense that the fractal string \mathcal itself (independent of a specific geometric realization of these lengths as corresponding to a choice of set \Omega) contains information about the fractal to which it corresponds. For each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cantor Set In Seven Iterations
A cantor or chanter is a person who leads people in singing or sometimes in prayer. In formal Jewish worship, a cantor is a person who sings solo verses or passages to which the choir or congregation responds. In Judaism, a cantor sings and leads congregants in prayer in Jewish religious services; sometimes called a hazzan. A cantor in Reform and Conservative Judaism, just like in Orthodox Judaism, goes through years of extensive religious education, similar to that of a Rabbi, in order to become an officially recognized cantor. They often come from a long line of cantors in their family; born with a natural gift of singing with incredible vocal range. The term itself was shaped by the Latin term for "singer," but is not an inherently Latin word. It is frequently used to translate a range of equivalent terms in other languages, such as for the leader of singing on a traditional Kerala snake boat, a Chundan Vallam. A similar term is precentor, defined as a leader of the singing of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Dimension
In mathematics, complex dimension usually refers to the dimension of a complex manifold or a complex algebraic variety. These are spaces in which the local neighborhoods of points (or of non-singular points in the case of a variety) are modeled on a Cartesian product of the form \mathbb^d for some d, and the complex dimension is the exponent d in this product. Because \mathbb can in turn be modeled by \mathbb^2, a space with complex dimension d will have real dimension 2d. That is, a smooth manifold of complex dimension d has real dimension 2d; and a complex algebraic variety of complex dimension d, away from any singular point, will also be a smooth manifold of real dimension 2d. However, for a real algebraic variety (that is a variety defined by equations with real coefficients), its dimension refers commonly to its complex dimension, and its real dimension refers to the maximum of the dimensions of the manifolds contained in the set of its real points. The real dimension is n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Structures
In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional meaning or significance. A partial list of possible structures are measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, events, equivalence relations, differential structures, and categories. Sometimes, a set is endowed with more than one feature simultaneously, which allows mathematicians to study the interaction between the different structures more richly. For example, an ordering imposes a rigid form, shape, or topology on the set, and if a set has both a topology feature and a group feature, such that these two features are related in a certain way, then the structure becomes a topological group. Mappings between sets which preserve structures (i.e., structures in the do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fractals
In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called Affine geometry, affine self-similar. Fractal geometry lies within the mathematical branch of measure theory. One way that fractals are different from finite geometric figures is how they Scaling (geometry), scale. Doubling the edge lengths of a filled polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the conventional dimension of the filled polygon). Likewise, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mellin Transform
In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions. The Mellin transform of a function is :\left\(s) = \varphi(s)=\int_0^\infty x^ f(x) \, dx. The inverse transform is :\left\(x) = f(x)=\frac \int_^ x^ \varphi(s)\, ds. The notation implies this is a line integral taken over a vertical line in the complex plane, whose real part ''c'' need only satisfy a mild lower bound. Conditions under which this inversion is valid are given in the Mellin inversion theorem. The transform is named after the Finnish mathematician Hjalmar Mellin, who introduced it in a paper pu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dirac Delta Measure
In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element ''x'' or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. Definition A Dirac measure is a measure on a set (with any -algebra of subsets of ) defined for a given and any (measurable) set by :\delta_x (A) = 1_A(x)= \begin 0, & x \not \in A; \\ 1, & x \in A. \end where is the indicator function of . The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome in the sample space . We can also say that the measure is a single atom at ; however, treating the Dirac measure as an atomic measure is not correct when we consider the sequential definition of Dirac delta, as the limit of a delta sequence. The Dirac measures are the extreme points of the convex set of probability measures on . The name is a back-formation from the Dirac delta functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor Function
In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from 0 to 1 as its argument reaches from 0 to 1. Thus, in one sense the function seems very much like a constant one which cannot grow, and in another, it does indeed monotonically grow. It is also called the Cantor ternary function, the Lebesgue function, Lebesgue's singular function, the Cantor–Vitali function, the Devil's staircase, the Cantor staircase function, and the Cantor–Lebesgue function. introduced the Cantor function and mentioned that Scheeffer pointed out that it was a counterexample to an extension of the fundamental theorem of calculus claimed by Harnack. The Cantor function was discussed and popularized by , and . De ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Benoit Mandelbrot
Benoit B. Mandelbrot (20 November 1924 – 14 October 2010) was a Polish-born French-American mathematician and polymath with broad interests in the practical sciences, especially regarding what he labeled as "the art of roughness" of physical phenomena and "the uncontrolled element in life". He referred to himself as a "fractalist" and is recognized for his contribution to the field of fractal geometry, which included coining the word "fractal", as well as developing a theory of "roughness and self-similarity" in nature. In 1936, at the age of 11, Mandelbrot and his family emigrated from Warsaw, Poland, to France. After World War II ended, Mandelbrot studied mathematics, graduating from universities in Paris and in the United States and receiving a master's degree in aeronautics from the California Institute of Technology. He spent most of his career in both the United States and France, having dual French and American citizenship. In 1958, he began a 35-year career ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemann's Explicit Formula
In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field. Riemann's explicit formula In his 1859 paper "On the Number of Primes Less Than a Given Magnitude" Riemann sketched an explicit formula (it was not fully proven until 1895 by von Mangoldt, see below) for the normalized prime-counting function which is related to the prime-counting function by :\pi_0(x) = \frac \lim_ \left ,\pi(x+h) + \pi(x-h)\,\right,, which takes the arithmetic mean of the limit from the left and the limit from the right at discontinuities. His formula was given in terms of the related function :f(x) = \pi_0(x) + \frac\,\pi_0(x^) + \frac\,\pi_0(x^) + \cdots in which a prime power counts as of a prime. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Zeta Function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > 1 and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory, and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article " On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pole (complex Analysis)
In complex analysis (a branch of mathematics), a pole is a certain type of singularity of a complex-valued function of a complex variable. In some sense, it is the simplest type of singularity. Technically, a point is a pole of a function if it is a zero of the function and is holomorphic in some neighbourhood of (that is, complex differentiable in a neighbourhood of ). A function is meromorphic in an open set if for every point of there is a neighborhood of in which either or is holomorphic. If is meromorphic in , then a zero of is a pole of , and a pole of is a zero of . This induces a duality between ''zeros'' and ''poles'', that is fundamental for the study of meromorphic functions. For example, if a function is meromorphic on the whole complex plane plus the point at infinity, then the sum of the multiplicities of its poles equals the sum of the multiplicities of its zeros. Definitions A function of a complex variable is holomorphic in an open ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minkowski Dimension
Minkowski, Mińkowski or Minkovski (Slavic feminine: Minkowska, Mińkowska or Minkovskaya; plural: Minkowscy, Mińkowscy; he, מינקובסקי, russian: Минковский) is a surname of Polish origin. It may refer to: * Minkowski or Mińkowski, a coat of arms of Polish nobility *Alyona Minkovski (born 1986), Russian-American correspondent and presenter * Eugène Minkowski (1885–1972), French psychiatrist * Hermann Minkowski (1864–1909) Russian-born German mathematician and physicist, known for: ** Minkowski addition ** Minkowski–Bouligand dimension ** Minkowski diagram ** Minkowski distance ** Minkowski functional ** Minkowski inequality ** Minkowski space *** Null vector (Minkowski space) ** Minkowski plane ** Minkowski's theorem ** Minkowski's question mark function ** Abraham–Minkowski controversy ** Hasse–Minkowski theorem ** Minkowski separation theorem ** Smith–Minkowski–Siegel mass formula *Christopher Minkowski (born 1953), American Indolog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]