Function Field Of A Variety
   HOME





Function Field Of A Variety
In algebraic geometry, the function field of an algebraic variety ''V'' consists of objects that are interpreted as rational functions on ''V''. In classical algebraic geometry they are ratios of polynomials; in complex geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. Definition for complex manifolds In complex geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions. The function field of a variety is then the set of all meromorphic functions on the variety. (Like all meromorphic functions, these take their values in \mathbb\cup\.) Together with the operations of addition and multiplication of functions, this is a field in the sense of algebra. For the Riemann sphere, which is the variety \mathbb^1 over the complex numbers, the global meromorphic func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Domain
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element ''a'' has the cancellation property, that is, if , an equality implies . "Integral domain" is defined almost universally as above, but there is some variation. This article follows the convention that rings have a multiplicative identity, generally denoted 1, but some authors do not follow this, by not requiring integral domains to have a multiplicative identity. Noncommutative integral domains are sometimes admitted. This article, however, follows the much more usual convention of reserving the term "integral domain" for the commutative case and using " domain" for the general case including noncommutative rings. Some sources, notably Lang, use the term entire ring for integral domain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) () is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbach (1997, 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartier Divisor
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-''r'' subvariety need not be definable by only ''r'' equations when ''r'' is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvarieties ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Function Field
In mathematics, an algebraic function field (often abbreviated as function field) of ''n'' variables over a field ''k'' is a finitely generated field extension ''K''/''k'' which has transcendence degree ''n'' over ''k''. Equivalently, an algebraic function field of ''n'' variables over ''k'' may be defined as a finite field extension of the field ''K'' = ''k''(''x''1,...,''x''''n'') of rational functions in ''n'' variables over ''k''. Example As an example, in the polynomial ring ''k'' 'X'',''Y''consider the ideal generated by the irreducible polynomial ''Y''2 − ''X''3 and form the field of fractions of the quotient ring ''k'' 'X'',''Y''(''Y''2 − ''X''3). This is a function field of one variable over ''k''; it can also be written as k(X)(\sqrt) (with degree 2 over k(X)) or as k(Y)(\sqrt (with degree 3 over k(Y)). We see that the degree of an algebraic function field is not a well-defined notion. Category structure The algebraic function fields ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transcendental Element
In mathematics, if is an associative algebra over , then an element of is an algebraic element over , or just algebraic over , if there exists some non-zero polynomial g(x) \in K /math> with coefficients in such that . Elements of that are not algebraic over are transcendental over . A special case of an associative algebra over K is an extension field L of K. These notions generalize the algebraic numbers and the transcendental numbers (where the field extension is , with being the field of complex numbers and being the field of rational numbers). Examples * The square root of 2 is algebraic over , since it is the root of the polynomial whose coefficients are rational. * Pi is transcendental over but algebraic over the field of real numbers : it is the root of , whose coefficients (1 and −) are both real, but not of any polynomial with only rational coefficients. (The definition of the term transcendental number uses , not .) Properties The following conditions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenization of a polynomial, homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse function, inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. If the defining polynomial of a plane algebraic curve is irreducible polynomial, irreducible, then one has an ''irreducible plane algebraic curve''. Otherwise, the algebraic curve is the union of one or several irreducible curves, called its ''Irreduc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Line
In projective geometry and mathematics more generally, a projective line is, roughly speaking, the extension of a usual line by a point called a '' point at infinity''. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; for example, two distinct projective lines in a projective plane meet in exactly one point (there is no "parallel" case). There are many equivalent ways to formally define a projective line; one of the most common is to define a projective line over a field ''K'', commonly denoted P1(''K''), as the set of one-dimensional subspaces of a two-dimensional ''K''-vector space. This definition is a special instance of the general definition of a projective space. The projective line over the reals is a manifold; see '' Real projective line'' for details. Homogeneous coordinates An arbitrary point in the projective line P1(''K'') may be represented by an equivalence class of '' homogeneous coordi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birational Geometry
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying Map (mathematics), mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. Birational maps Rational maps A rational mapping, rational map from one variety (understood to be Irreducible component, irreducible) X to another variety Y, written as a dashed arrow , is defined as a algebraic geometry#Morphism of affine varieties, morphism from a nonempty open subset U \subset X to Y. By definition of the Zariski topology used in algebraic geometry, a nonempty open subset U is always dense in X, in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions. Birational maps A birational map from ''X'' to ''Y'' is a ration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Function Field
In mathematics, an algebraic function field (often abbreviated as function field) of ''n'' variables over a field ''k'' is a finitely generated field extension ''K''/''k'' which has transcendence degree ''n'' over ''k''. Equivalently, an algebraic function field of ''n'' variables over ''k'' may be defined as a finite field extension of the field ''K'' = ''k''(''x''1,...,''x''''n'') of rational functions in ''n'' variables over ''k''. Example As an example, in the polynomial ring ''k'' 'X'',''Y''consider the ideal generated by the irreducible polynomial ''Y''2 − ''X''3 and form the field of fractions of the quotient ring ''k'' 'X'',''Y''(''Y''2 − ''X''3). This is a function field of one variable over ''k''; it can also be written as k(X)(\sqrt) (with degree 2 over k(X)) or as k(Y)(\sqrt (with degree 3 over k(Y)). We see that the degree of an algebraic function field is not a well-defined notion. Category structure The algebraic function fields ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dimension Of An Algebraic Variety
In mathematics and specifically in algebraic geometry, the dimension of an algebraic variety may be defined in various equivalent ways. Some of these definitions are of geometric nature, while some other are purely algebraic and rely on commutative algebra. Some are restricted to algebraic varieties while others apply also to any algebraic set. Some are intrinsic, as independent of any embedding of the variety into an affine or projective space, while other are related to such an embedding. Dimension of an affine algebraic set Let be a field, and be an algebraically closed extension. An affine algebraic set is the set of the common zeros in of the elements of an ideal in a polynomial ring R=K _1, \ldots, x_n Let A=R/I be the ''K''-algebra of the polynomial functions over . The dimension of is any of the following integers. It does not change if is enlarged, if is replaced by another algebraically closed extension of and if is replaced by another ideal having ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcendence Degree
In mathematics, a transcendental extension L/K is a field extension such that there exists an element in the field L that is transcendental over the field K; that is, an element that is not a root of any univariate polynomial with coefficients in K. In other words, a transcendental extension is a field extension that is not algebraic. For example, \mathbb and \mathbb are both transcendental extensions of \mathbb. A transcendence basis of a field extension L/K (or a transcendence basis of L over K) is a maximal algebraically independent subset of L over K. Transcendence bases share many properties with bases of vector spaces. In particular, all transcendence bases of a field extension have the same cardinality, called the transcendence degree of the extension. Thus, a field extension is a transcendental extension if and only if its transcendence degree is nonzero. Transcendental extensions are widely used in algebraic geometry. For example, the dimension of an algebraic varie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]