HOME





Finitely-generated Group
In mathematics, finitely generated may refer to: * Finitely generated object * Finitely generated group * Finitely generated monoid * Finitely generated abelian group * Finitely generated module In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts i ... * Finitely generated ideal * Finitely generated algebra * Finitely generated space {{mathdab de:Endlich erzeugt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Object
In category theory, a finitely generated object is the quotient of a free object over a finite set, in the sense that it is the target of a regular epimorphism from a free object that is free on a finite set.. For instance, one way of defining a finitely generated group is that it is the image of a group homomorphism from a finitely generated free group In mathematics, the free group ''F'S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''− .... See also * Finitely generated (other) References Category theory {{cattheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finitely Generated Group
In algebra, a finitely generated group is a group ''G'' that has some finite generating set ''S'' so that every element of ''G'' can be written as the combination (under the group operation) of finitely many elements of ''S'' and of inverses of such elements. By definition, every finite group is finitely generated, since ''S'' can be taken to be ''G'' itself. Every infinite finitely generated group must be countable but countable groups need not be finitely generated. The additive group of rational numbers Q is an example of a countable group that is not finitely generated. Examples * Every quotient of a finitely generated group ''G'' is finitely generated; the quotient group is generated by the images of the generators of ''G'' under the canonical projection. * A group that is generated by a single element is called cyclic. Every infinite cyclic group is isomorphic to the additive group of the integers Z. ** A locally cyclic group is a group in which every finitely gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finitely Generated Monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for automata theory (Krohn–Rhodes theory), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Abelian Group
In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, n_s. In this case, we say that the set \ is a ''generating set'' of G or that x_1,\dots, x_s ''generate'' G. So, finitely generated abelian groups can be thought of as a generalization of cyclic groups. Every finite abelian group is finitely generated. The finitely generated abelian groups can be completely classified. Examples * The integers, \left(\mathbb,+\right), are a finitely generated abelian group. * The integers modulo n, \left(\mathbb/n\mathbb,+\right), are a finite (hence finitely generated) abelian group. * Any direct sum of finitely many finitely generated abelian groups is again a finitely generated abelian group. * Every lattice forms a finitely generated free abelian group. There are no other examples (up to isomorphism) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring ''R'' may also be called a finite ''R''-module, finite over ''R'', or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide. A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group. Definition The left ''R''-module ''M'' is finitely generated if there exist ''a''1, ''a''2, ..., ''a''''n'' in ''M'' such that for any ''x'' in ''M'', there exist ''r''1, ''r''2, ..., ''r''''n'' in ''R'' with ''x'' = ''r''1''a''1 + ''r''2''a''2 + ... + ''r''''n''''a''''n''. The set is referred to as a gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Finitely Generated Ideal
In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Algebra
In mathematics, a finitely generated algebra (also called an algebra of finite type) is a commutative associative algebra ''A'' over a field ''K'' where there exists a finite set of elements a_1,\dots,a_n of ''A'' such that every element of ''A'' can be expressed as a polynomial in a_1,\dots,a_n, with coefficients in ''K''. Equivalently, there exist elements a_1,\dots,a_n\in A such that the evaluation homomorphism at =(a_1,\dots,a_n) :\phi_\colon K _1,\dots,X_ntwoheadrightarrow A is surjective; thus, by applying the first isomorphism theorem, A \simeq K _1,\dots,X_n(\phi_). Conversely, A:= K _1,\dots,X_nI for any ideal I\subseteq K _1,\dots,X_n/math> is a K-algebra of finite type, indeed any element of A is a polynomial in the cosets a_i:=X_i+I, i=1,\dots,n with coefficients in K. Therefore, we obtain the following characterisation of finitely generated K-algebras :A is a finitely generated K-algebra if and only if it is isomorphic as a K-algebra to a quotient ring of the type ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Space
In general topology, an Alexandrov topology is a topology in which the intersection of an ''arbitrary'' family of open sets is open (while the definition of a topology only requires this for a ''finite'' family). Equivalently, an Alexandrov topology is one whose open sets are the upper sets for some preorder on the space. Spaces with an Alexandrov topology are also known as Alexandrov-discrete spaces or finitely generated spaces. The latter name stems from the fact that their topology is uniquely determined by the family of all finite subspaces. This makes them a generalization of finite topological spaces. Alexandrov-discrete spaces are named after the Russian topologist Pavel Alexandrov. They should not be confused with Alexandrov spaces from Riemannian geometry introduced by the Russian mathematician Aleksandr Danilovich Aleksandrov. Characterizations of Alexandrov topologies Alexandrov topologies have numerous characterizations. In a topological space X, the following co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]