Equalizer (mathematics)
In mathematics, an equaliser is a set of arguments where two or more function (mathematics), functions have equality (math), equal values. An equaliser is the solution set of an equation. In certain contexts, a difference kernel is the equaliser of exactly two functions. Definitions Let ''X'' and ''Y'' be Set (mathematics), sets. Let ''f'' and ''g'' be function (mathematics), functions, both from ''X'' to ''Y''. Then the ''equaliser'' of ''f'' and ''g'' is the set of elements ''x'' of ''X'' such that ''f''(''x'') equals ''g''(''x'') in ''Y''. Symbolically: : \operatorname(f, g) := \. The equaliser may be denoted Eq(''f'', ''g'') or a variation on that theme (such as with lowercase letters "eq"). In informal contexts, the notation is common. The definition above used two functions ''f'' and ''g'', but there is no need to restrict to only two functions, or even to only finite set, finitely many functions. In general, if F is a Set (mathematics), set of functions from ''X'' to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universal Property
In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field (mathematics), field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property. Technically, a universal property is defined in terms of category (mathematics), categories and functors by means of a universal morphism (see , below). Universal morphisms can also be thought more abstractly as Initia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Codomain
In mathematics, a codomain, counter-domain, or set of destination of a function is a set into which all of the output of the function is constrained to fall. It is the set in the notation . The term '' range'' is sometimes ambiguously used to refer to either the codomain or the ''image'' of a function. A codomain is part of a function if is defined as a triple where is called the '' domain'' of , its ''codomain'', and its '' graph''. The set of all elements of the form , where ranges over the elements of the domain , is called the ''image'' of . The image of a function is a subset of its codomain so it might not coincide with it. Namely, a function that is not surjective has elements in its codomain for which the equation does not have a solution. A codomain is not part of a function if is defined as just a graph. For example in set theory it is desirable to permit the domain of a function to be a proper class , in which case there is formally no such thin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Product (category Theory)
In category theory, the product of two (or more) object (category theory), objects in a category (mathematics), category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of set (mathematics), sets, the direct product of group (mathematics), groups or ring (mathematics), rings, and the product topology, product of topological spaces. Essentially, the product of a indexed family, family of objects is the "most general" object which admits a morphism to each of the given objects. Definition Product of two objects Fix a category C. Let X_1 and X_2 be objects of C. A product of X_1 and X_2 is an object X, typically denoted X_1 \times X_2, equipped with a pair of morphisms \pi_1 : X \to X_1, \pi_2 : X \to X_2 satisfying the following universal property: * For every object Y and every pair of morphisms f_1 : Y \to X_1, f_2 : Y \to X_2, there exists a unique morphism f : Y \to X_1 \times X_2 such that the follo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isomorphism
In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived . The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may often be identified. In mathematical jargon, one says that two objects are the same up to an isomorphism. A common example where isomorphic structures cannot be identified is when the structures are substructures of a larger one. For example, all subspaces of dimension one of a vector space are isomorphic and cannot be identified. An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. When quantified, A \subseteq B is represented as \forall x \left(x \in A \Rightarrow x \in B\right). One can prove the statement A \subseteq B by applying a proof technique known as the element argument:Let sets ''A'' and ''B'' be given. To prove that A \subseteq B, # suppose that ''a'' is a particular but arbitrarily chosen element of A # show that ''a'' is an element of ''B''. The validity of this technique ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inclusion Function
In mathematics, if A is a subset of B, then the inclusion map is the function (mathematics), function ι, \iota that sends each element x of A to x, treated as an element of B: \iota : A\rightarrow B, \qquad \iota(x)=x. An inclusion map may also be referred to as an inclusion function, an insertion, or a canonical injection. A "hooked arrow" () is sometimes used in place of the function arrow above to denote an inclusion map; thus: \iota: A\hookrightarrow B. (However, some authors use this hooked arrow for any embedding.) This and other analogous injective functions from substructure (mathematics), substructures are sometimes called natural injections. Given any morphism f between object (category theory), objects X and Y, if there is an inclusion map \iota : A \to X into the Domain of a function, domain X, then one can form the Restriction (mathematics), restriction f\circ \iota of f. In many instances, one can also construct a canonical inclusion into the codomain R \to Y kn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universal Algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures in general, not specific types of algebraic structures. For instance, rather than considering groups or rings as the object of studythis is the subject of group theory and ring theory in universal algebra, the object of study is the possible types of algebraic structures and their relationships. Basic idea In universal algebra, an (or algebraic structure) is a set ''A'' together with a collection of operations on ''A''. Arity An ''n''- ary operation on ''A'' is a function that takes ''n'' elements of ''A'' and returns a single element of ''A''. Thus, a 0-ary operation (or ''nullary operation'') can be represented simply as an element of ''A'', or a '' constant'', often denoted by a letter like ''a''. A 1-ary operation (or '' unary operation'') is simply a function from ''A'' to ''A'', often denoted by a symbol placed in front of its argument, like ~'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prentice Hall International Series In Computer Science
Prentice Hall International Series in Computer Science was a series of books on computer science published by Prentice Hall. The series' founding editor was Tony Hoare. Richard Bird subsequently took over editing the series. Many of the books in the series have been in the area of formal methods in particular. Selected books The following books were published in the series: * R. S. Bird, ''Introduction to Functional Programming using Haskell'', 2nd edition, 1998. . * R. S. Bird and O. de Moor, ''Algebra of Programming'', 1996. . (100th volume in the series.) * O.-J. Dahl, ''Verifiable Programming'', 1992. . * D. M. Gabbay, ''Elementary Logics: A Procedural Perspective'', 1998. . * I. J. Hayes (ed.), ''Specification Cases Studies'', 2nd edition, 1993. . * M. G. Hinchey and J. P. Bowen (eds.), ''Applications of Formal Methods'', 1996. . * C. A. R. Hoare, ''Communicating Sequential Processes'', 1985. hardback or paperback. * C. A. R. Hoare and M. J. C. Gordon, ''Mechanized R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unique (mathematics)
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols " ∃!" or "∃=1". It is defined to mean there exists an object with the given property, and all objects with this property are equal. For example, the formal statement : \exists! n \in \mathbb\,(n - 2 = 4) may be read as "there is exactly one natural number n such that n - 2 =4". Proving uniqueness The most common technique to prove the unique existence of an object is to first prove the existence of the entity with the desired condition, and then to prove that any two such entities (say, ''a'' and ''b'') must be equal to each other (i.e. a = b). For example, to show that the equation x + 2 = 5 has exactly one solution, one would first start by establishing that at least one solution exists ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Limit (category Theory)
In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as product (category theory), products, pullback (category theory), pullbacks and inverse limits. The duality (category theory), dual notion of a colimit generalizes constructions such as disjoint unions, direct sums, coproducts, pushout (category theory), pushouts and direct limits. Limits and colimits, like the strongly related notions of universal property, universal properties and adjoint functors, exist at a high level of abstraction. In order to understand them, it is helpful to first study the specific examples these concepts are meant to generalize. Definition Limits and colimits in a category (mathematics), category C are defined by means of diagrams in C. Formally, a diagram (category theory), diagram of shape J in C is a functor from J to C: :F:J\to C. The category J is thought of as an index category, and the diagram F is tho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |