Eight-dimensional Space
   HOME



picture info

Eight-dimensional Space
In mathematics, a sequence of ''n'' real numbers can be understood as a point (geometry), location in ''n''-dimension (vector space), dimensional space. When ''n'' = 8, the set of all such locations is called 8-dimensional space. Often such spaces are studied as vector spaces, without any notion of distance. Eight-dimensional Euclidean space is eight-dimensional space equipped with the Euclidean metric. More generally the term may refer to an eight-dimensional vector space over any field (mathematics), field, such as an eight-dimensional complex number, complex vector space, which has 16 real dimensions. It may also refer to an eight-dimensional manifold such as an 8-sphere, or a variety of other geometric constructions. Geometry 8-polytope A polytope in eight dimensions is called an 8-polytope. The most studied are the regular polytopes, of which there are only List of regular polytopes#Convex 4, three in eight dimensions: the 8-simplex, 8-cube, and 8-orthoplex. A broader fami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Uniform 8-polytope
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets. A uniform 8-polytope is one which is vertex-transitive, and constructed from uniform 7-polytope facets. Regular 8-polytopes Regular 8-polytopes can be represented by the Schläfli symbol , with v 7-polytope facets around each peak. There are exactly three such convex regular 8-polytopes: # - 8-simplex # - 8-cube # - 8-orthoplex There are no nonconvex regular 8-polytopes. Characteristics The topology of any given 8-polytope is defined by its Betti numbers and torsion coefficients.Richeson, D.; ''Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy'', Princeton, 2008. The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 8-polytopes, whatever their underlying topology. This inadequacy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

4 21 T0 E8
4 (four) is a number, numeral and digit. It is the natural number following 3 and preceding 5. It is a square number, the smallest semiprime and composite number, and is considered unlucky in many East Asian cultures. Evolution of the Hindu-Arabic digit Brahmic numerals represented 1, 2, and 3 with as many lines. 4 was simplified by joining its four lines into a cross that looks like the modern plus sign. The Shunga would add a horizontal line on top of the digit, and the Kshatrapa and Pallava evolved the digit to a point where the speed of writing was a secondary concern. The Arabs' 4 still had the early concept of the cross, but for the sake of efficiency, was made in one stroke by connecting the "western" end to the "northern" end; the "eastern" end was finished off with a curve. The Europeans dropped the finishing curve and gradually made the digit less cursive, ending up with a digit very close to the original Brahmin cross. While the shape of the character for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

E8 (mathematics)
In mathematics, E8 is any of several closely related exceptional simple Lie groups, linear algebraic groups or Lie algebras of dimension 248; the same notation is used for the corresponding root lattice, which has rank 8. The designation E8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled A''n'', B''n'', C''n'', D''n'', and five exceptional cases labeled G2, F4, E6, E7, and E8. The E8 algebra is the largest and most complicated of these exceptional cases. Basic description The Lie group E8 has dimension 248. Its rank, which is the dimension of its maximal torus, is eight. Therefore, the vectors of the root system are in eight-dimensional Euclidean space: they are described explicitly later in this article. The Weyl group of E8, which is the group of symmetries of the maximal torus that are induced by conjugations in the whole group, has order 2357 = . The compact group E8 is u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

8-demicube T0 D7
In geometry, a demiocteract or 8-demicube is a uniform 8-polytope, constructed from the 8-hypercube, octeract, with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM8 for an 8-dimensional ''half measure'' polytope. Coxeter named this polytope as 151 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol \left\ or . Cartesian coordinates Cartesian coordinates for the vertices of an 8-demicube centered at the origin are alternate halves of the 8-cube: : (±1,±1,±1,±1,±1,±1,±1,±1) with an odd number of plus signs. Related polytopes and honeycombs This polytope is the vertex figure for the uniform tessellation, 251 with Coxeter-Dynkin diagram: : Images References * H.S.M. Coxeter: ** Coxeter, ''Regular Polytopes ''Regular Polytopes'' is a geometry book on regular polytopes wr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

8-cube T7
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol , being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the ''4-cube'') and ''oct'' for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets. It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called an 8-orthoplex and is a part of the infinite family of cross-polytopes. Cartesian coordinates Cartesian coordinates for the vertices of an 8-cube centered at the origin and edge length 2 are : (±1,±1,±1,±1,±1,±1,±1,±1) while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7) with -1 < xi< ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

8-cube T0
In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol , being composed of 3 7-cubes around each 6-face. It is called an octeract, a portmanteau of tesseract (the ''4-cube'') and ''oct'' for eight (dimensions) in Greek. It can also be called a regular hexdeca-8-tope or hexadecazetton, being an 8-dimensional polytope constructed from 16 regular facets. It is a part of an infinite family of polytopes, called hypercubes. The dual of an 8-cube can be called an 8-orthoplex and is a part of the infinite family of cross-polytopes. Cartesian coordinates Cartesian coordinates for the vertices of an 8-cube centered at the origin and edge length 2 are : (±1,±1,±1,±1,±1,±1,±1,±1) while the interior of the same consists of all points (x0, x1, x2, x3, x4, x5, x6, x7) with -1 < xi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

8-simplex T0
In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices, 36 edges, 84 triangle faces, 126 tetrahedral cells, 126 5-cell 4-faces, 84 5-simplex 5-faces, 36 6-simplex 6-faces, and 9 7-simplex 7-faces. Its dihedral angle is cos−1(1/8), or approximately 82.82°. It can also be called an enneazetton, or ennea-8-tope, as a 9- facetted polytope in eight-dimensions. The name ''enneazetton'' is derived from ''ennea'' for nine facets in Greek and ''-zetta'' for having seven-dimensional facets, with suffix ''-on''. Jonathan Bowers gives it the acronym ene. As a configuration This configuration matrix represents the 8-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces, 6-faces and 7-faces. The diagonal numbers say how many of each element occur in the whole 8-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Coxeter Plane
In mathematics, a Coxeter element is an element of an irreducible Coxeter group which is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. This order is known as the Coxeter number. They are named after British-Canadian geometer H.S.M. Coxeter, who introduced the groups in 1934 as abstractions of reflection groups. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order. There are many different ways to define the Coxeter number of an irreducible root system. *The Coxeter number is the order of any Coxeter element;. *The Coxeter number is where is the rank, and is the number of reflections. In the crystallographic case, is half the number of roots; and is the dimension of the corresponding semisimple Lie algebra. *If the h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

1 42 Polytope
In 8-dimensional geometry, the 142 is a uniform 8-polytope, constructed within the symmetry of the E8 (mathematics), E8 group. Its Coxeter symbol is 142, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequences. The rectified 142 is constructed by points at the mid-edges of the 142 and is the same as the birectified 241, and the quadrirectified 421. These polytopes are part of a family of 255 (28 − 1) convex uniform polytopes in 8 dimensions, made of uniform polytope facets and vertex figures, defined by all non-empty combinations of rings in this Coxeter-Dynkin diagram: . 142 polytope The 142 is composed of 2400 facets: 240 Gosset 1 32 polytope, 132 polytopes, and 2160 7-demicubes (141). Its vertex figure is a birectified 7-simplex. This polytope, along with the demiocteract, can Honeycomb (geometry), tessellate 8-dimensional space, represented by the symbol 152, and Coxeter-Dynkin diagram: . Alternate name ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

2 41 Polytope
In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 (mathematics), E8 group. Its Coxeter symbol is 241, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequences. The rectified 241 is constructed by points at the mid-edges of the 241. The birectified 241 is constructed by points at the triangle face centers of the 241, and is the same as the Rectified 1 42 polytope, rectified 142. These polytopes are part of a family of 255 (28 − 1) convex uniform polytopes in 8-dimensions, made of uniform polytope facets, defined by all permutations of rings in this Coxeter-Dynkin diagram: . 241 polytope The 241 is composed of 17,520 Facet (geometry), facets (240 Gosset 2 31 polytope, 231 polytopes and 17,280 7-simplex, 7-simplices), 144,960 ''6-faces'' (6,720 E6 polytope, 221 polytopes and 138,240 6-simplex, 6-simplices), 544,320 5-faces (60,480 pentacross, 211 and 483,840 5-sim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

4 21 Polytope
In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 (mathematics), E8 group (mathematics), group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an ''8-ic semi-regular figure''.Gosset, 1900 Its Coxeter symbol is 421, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 4-node sequences, . The rectified 421 is constructed by points at the mid-edges of the 421. The birectified 421 is constructed by points at the triangle face centers of the 421. The trirectified 421 is constructed by points at the tetrahedral centers of the 421. These polytopes are part of a family of 255 = 28 − 1 convex uniform 8-polytopes, made of uniform 7-polytope facets and vertex figures, defined by all permutations of one or more rings in this Coxeter-Dynkin diagram: . 421 polytope The 421 polytope has 17,280 7-simplex and 2,160 7-orthoplex Facet (geometry), f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]