Doubly Transitive
   HOME
*





Doubly Transitive
A group G acts 2-transitively on a set S if it acts transitively on the set of distinct ordered pairs \. That is, assuming (without a real loss of generality) that G acts on the left of S, for each pair of pairs (x,y),(w,z)\in S\times S with x \neq y and w\neq z, there exists a g\in G such that g(x,y) = (w,z). The group action is sharply 2-transitive if such g\in G is unique. A 2-transitive group is a group such that there exists a group action that's 2-transitive and faithful. Similarly we can define sharply 2-transitive group. Equivalently, gx = w and gy = z, since the induced action on the distinct set of pairs is g(x,y) = (gx,gy). The definition works in general with ''k'' replacing 2. Such multiply transitive permutation groups can be defined for any natural number ''k''. Specifically, a permutation group ''G'' acting on ''n'' points is ''k''-transitive if, given two sets of points ''a''1, ... ''a''''k'' and ''b''1, ... ''b''''k'' with the property that all the ''a''''i'' a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathieu Group
In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They were the first sporadic groups to be discovered. Sometimes the notation ''M''9, ''M''10, ''M''20 and ''M''21 is used for related groups (which act on sets of 9, 10, 20, and 21 points, respectively), namely the stabilizers of points in the larger groups. While these are not sporadic simple groups, they are subgroups of the larger groups and can be used to construct the larger ones. John Conway has shown that one can also extend this sequence up, obtaining the Mathieu groupoid ''M''13 acting on 13 points. ''M''21 is simple, but is not a sporadic group, being isomorphic to PSL(3,4). History introduced the group ''M''12 as part of an investigation of multiply transitive permutation groups, and briefly mentioned (on page 27 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solvable Group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Motivation Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0). This means associated to a polynomial f \in F /math> there is a tower of field extensionsF = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=Ksuch that # F_i = F_alpha_i/math> where \alpha_i^ \in F_, so \alpha_i is a solution to the equation x^ - a where a \in F_ # F_m contains a splitting field for f(x) Example For example, the smallest Galois field extension of \mathbb containing the elem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business international ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multiply Transitive Group
In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objects. They were the first sporadic groups to be discovered. Sometimes the notation ''M''9, ''M''10, ''M''20 and ''M''21 is used for related groups (which act on sets of 9, 10, 20, and 21 points, respectively), namely the stabilizers of points in the larger groups. While these are not sporadic simple groups, they are subgroups of the larger groups and can be used to construct the larger ones. John Conway has shown that one can also extend this sequence up, obtaining the Mathieu groupoid ''M''13 acting on 13 points. ''M''21 is simple, but is not a sporadic group, being isomorphic to PSL(3,4). History introduced the group ''M''12 as part of an investigation of multiply transitive permutation groups, and briefly mentioned (on page 274) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Almost Simple Group
In mathematics, a group is said to be almost simple if it contains a non-abelian simple group and is contained within the automorphism group of that simple group – that is, if it fits between a (non-abelian) simple group and its automorphism group. In symbols, a group ''A'' is almost simple if there is a (non-abelian) simple group ''S'' such that S \leq A \leq \operatorname(S). Examples * Trivially, non-abelian simple groups and the full group of automorphisms are almost simple, but proper examples exist, meaning almost simple groups that are neither simple nor the full automorphism group. * For n=5 or n \geq 7, the symmetric group \mathrm_n is the automorphism group of the simple alternating group \mathrm_n, so \mathrm_n is almost simple in this trivial sense. * For n=6 there is a proper example, as \mathrm_6 sits properly between the simple \mathrm_6 and \operatorname(\mathrm_6), due to the exceptional outer automorphism of \mathrm_6. Two other groups, the Mathieu group \mathr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classification Of Finite Simple Groups
In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004. Simple groups can be seen as the basic building blocks of all finite groups, reminiscent of the way the prime numbers are the basic building blocks of the natural numbers. The Jordan–Hölder theorem is a more precise way of stating this fact about finite groups. However, a significant difference from integer factorization is that such "building blocks" do not necessarily determine a unique group, since there might be many non-isomorphic groups with the same composition series or, put in another way, the extension p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Transitive Finite Linear Groups
In mathematics, especially in areas of abstract algebra and finite geometry, the list of transitive finite linear groups is an important classification of certain highly symmetric actions of finite groups on vector spaces. The solvable finite 2-transitive groups were classified by Bertram Huppert. The classification of finite simple groups made possible the complete classification of finite doubly transitive permutation groups. This is a result by Christoph Hering. A finite 2-transitive group has a socle that is either a vector space over a finite field or a non-abelian primitive simple group; groups of the latter kind are almost simple groups and described elsewhere. This article provides a complete list of the finite 2-transitive groups whose socle is elementary abelian. Let p be a prime, and G a subgroup of the general linear group GL(d,p) acting transitively on the nonzero vectors of the ''d''-dimensional vector space (F_p)^d over the finite fieldF_p with ''p'' elements ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bertram Huppert
Bertram Huppert (born 22 October 1927 in Worms, Germany) is a German mathematician specializing in group theory and the representation theory of finite groups. His ''Endliche Gruppen'' ( finite groups) is an influential textbook in group theory, and he has over 50 doctoral descendants. Life Education Bertram Huppert went to school in Bonn from 1934 until 1945. In 1950, he wrote his diploma thesis in mathematics at the University of Mainz. The thesis discussed "''nicht fortsetzbare Potenzreihen''" (discontinuous power series), and was written under the direction of Helmut Wielandt. When Wielandt moved to the University of Tübingen in April 1951, Huppert followed him later in the year, and gained his doctorate (as Wielandt's first doctoral student) with the work "''Produkte von paarweise vertauschbaren zyklischen Gruppen"'' (products of pairwise permutable cyclic groups), in which he showed, among other things, that such groups were supersoluble. This was the first of more tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zassenhaus Group
In mathematics, a Zassenhaus group, named after Hans Zassenhaus, is a certain sort of doubly transitive permutation group very closely related to rank-1 groups of Lie type. Definition A Zassenhaus group is a permutation group ''G'' on a finite set ''X'' with the following three properties: * ''G'' is doubly transitive. *Non-trivial elements of ''G'' fix at most two points. *''G'' has no regular normal subgroup. ("Regular" means that non-trivial elements do not fix any points of ''X''; compare free action.) The degree of a Zassenhaus group is the number of elements of ''X''. Some authors omit the third condition that ''G'' has no regular normal subgroup. This condition is put in to eliminate some "degenerate" cases. The extra examples one gets by omitting it are either Frobenius groups or certain groups of degree 2''p'' and order 2''p''(2''p'' − 1)''p'' for a prime ''p'', that are generated by all semilinear mappings and Galois automorphisms of a field of or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \mathrm_n defined over a finite set of n symbols consists of the permutations that can be performed on the n symbols. Since there are n! (n factorial) such permutation operations, the order (number of elements) of the symmetric group \mathrm_n is n!. Although symmetric groups can be defined on infinite sets, this article focuses on the finite symmetric groups: their applications, their elements, their conjugacy classes, a finite presentation, their subgroups, their automorphism groups, and their representation theory. For the remainder of this article, "symmetric group" will mean a symmetric group on a finite set. The symmetric group is important to diverse areas of mathematics such as Galois theory, invariant theory, the repres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Primitive Group
In mathematics, a permutation group ''G'' acting on a non-empty finite set ''X'' is called primitive if ''G'' acts transitively on ''X'' and the only partitions the ''G''-action preserves are the trivial partitions into either a single set or into , ''X'', singleton sets. Otherwise, if ''G'' is transitive and ''G'' does preserve a nontrivial partition, ''G'' is called imprimitive. While primitive permutation groups are transitive, not all transitive permutation groups are primitive. The simplest example is the Klein four-group acting on the vertices of a square, which preserves the partition into diagonals. On the other hand, if a permutation group preserves only trivial partitions, it is transitive, except in the case of the trivial group acting on a 2-element set. This is because for a non-transitive action, either the orbits of ''G'' form a nontrivial partition preserved by ''G'', or the group action is trivial, in which case ''all'' nontrivial partitions of ''X'' (which exi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Frame
In mathematics, and more specifically in projective geometry, a projective frame or projective basis is a tuple of points in a projective space that can be used for defining homogeneous coordinates in this space. More precisely, in a projective space of dimension , a projective frame is a -tuple of points such that no hyperplane contains of them. A projective frame is sometimes called a simplex, although a simplex in a space of dimension has at most vertices. In this article, only projective spaces over a field are considered, although most results can be generalized to projective spaces over a division ring. Let be a projective space of dimension , where is a -vector space of dimension . Let p:V\setminus\\to \mathbf P(V) be the canonical projection that maps a nonzero vector to the corresponding point of , which is the vector line that contains . Every frame of can be written as \left(p(e_0), \ldots, p(e_)\right), for some vectors e_0, \dots, e_ of . The definition im ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]