Divergent Geometric Series
   HOME
*





Divergent Geometric Series
In mathematics, an infinite geometric series of the form :\sum_^\infty ar^ = a + ar + ar^2 + ar^3 +\cdots is divergent series, divergent if and only if ,  ''r'' ,  ≥ 1 (number), 1. Methods for summation of divergent series are sometimes useful, and usually evaluate divergent geometric series to a sum that agrees with the formula for the convergent case :\sum_^\infty ar^ = \frac. This is true of any summation method that possesses the properties of Divergent series#Properties of summation methods, regularity, linearity, and stability. Examples In increasing order of difficulty to sum: *1 − 1 + 1 − 1 + · · ·, whose common ratio is −1 (number), −1 *1 − 2 + 4 − 8 + · · ·, whose common ratio is −2 *1 + 2 + 4 + 8 + · · ·, whose common ratio is 2 (number), 2 *1 + 1 + 1 + 1 + · · ·, whose common ratio is 1. Motivation for study It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Summation Method
The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instruments, tunings with equal intervals between the paired notes of successive open strings Other uses in arts, entertainment, and media * Regular character, a main character who appears more frequently and/or prominently than a recurring character * Regular division of the plane, a series of drawings by the Dutch artist M. C. Escher which began in 1936 * ''Regular Show'', an animated television sitcom * ''The Regular Guys'', a radio morning show Language * Regular inflection, the formation of derived forms such as plurals in ways that are typical for the language ** Regular verb * Regular script, the newest of the Chinese script styles Mathematics There are an extremely large number of unrelated notions of "regularity" in mathematics. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Summation
In mathematics, Borel summation is a summation method for divergent series, introduced by . It is particularly useful for summing divergent asymptotic series, and in some sense gives the best possible sum for such series. There are several variations of this method that are also called Borel summation, and a generalization of it called Mittag-Leffler summation. Definition There are (at least) three slightly different methods called Borel summation. They differ in which series they can sum, but are consistent, meaning that if two of the methods sum the same series they give the same answer. Throughout let denote a formal power series :A(z) = \sum_^\infty a_kz^k, and define the Borel transform of to be its equivalent exponential series :\mathcalA(t) \equiv \sum_^\infty \fract^k. Borel's exponential summation method Let denote the partial sum :A_n(z) = \sum_^n a_k z^k. A weak form of Borel's summation method defines the Borel sum of to be : \lim_ e^\sum_^\infty \fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler Summation
In the mathematics of convergent and divergent series, Euler summation is a summation method. That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σ''a''''n'', if its Euler transform converges to a sum, then that sum is called the Euler sum of the original series. As well as being used to define values for divergent series, Euler summation can be used to speed the convergence of series. Euler summation can be generalized into a family of methods denoted (E, ''q''), where ''q'' ≥ 0. The (E, 1) sum is the ordinary Euler sum. All of these methods are strictly weaker than Borel summation; for ''q'' > 0 they are incomparable with Abel summation. Definition For some value ''y'' we may define the Euler sum (if it converges for that value of ''y'') corresponding to a particular formal summation as: : _\, \sum_^\infty a_j := \sum_^\infty \frac \sum_^i \binom y^ a_j . If all the formal sum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abel Summation
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series :1 + \frac + \frac + \frac + \frac + \cdots =\sum_^\infty\frac. The divergence of the harmonic series was proven by the medieval mathematician Nicole Oresme. In specialized mathematical contexts, values can be objectively assigned to certain series whose sequences of partial sums diverge, in order to make meaning of the divergence of the series. A ''summability method'' or ''summation method'' is a partial function from the set of series to values. For example, Cesàro summation assigns Grandi's divergent se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cesàro Summation
In mathematical analysis, Cesàro summation (also known as the Cesàro mean ) assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as ''n'' tends to infinity, of the sequence of arithmetic means of the first ''n'' partial sums of the series. This special case of a matrix summability method is named for the Italian analyst Ernesto Cesàro (1859–1906). The term ''summation'' can be misleading, as some statements and proofs regarding Cesàro summation can be said to implicate the Eilenberg–Mazur swindle. For example, it is commonly applied to Grandi's series with the conclusion that the ''sum'' of that series is 1/2. Definition Let (a_n)_^\infty be a sequence, and let :s_k = a_1 + \cdots + a_k= \sum_^k a_n be its th partial sum. The sequence is called Cesàro summable, with Cesàro sum , if, as tends to infinity, the arithmetic mean of its first ''n'' partial sums tends to : :\lim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mittag-Leffler Star
In complex analysis, a branch of mathematics, the Mittag-Leffler star of a complex-analytic function is a set in the complex plane obtained by attempting to extend that function along rays emanating from a given point. This concept is named after Gösta Mittag-Leffler. Definition and elementary properties Formally, the Mittag-Leffler star of a complex-analytic function ''ƒ'' defined on an open disk ''U'' in the complex plane centered at a point ''a'' is the set of all points ''z'' in the complex plane such that ''ƒ'' can be continued analytically along the line segment joining ''a'' and ''z'' (see analytic continuation along a curve). It follows from the definition that the Mittag-Leffler star is an open star-convex set (with respect to the point ''a'') and that it contains the disk ''U''. Moreover, ''ƒ'' admits a single-valued analytic continuation to the Mittag-Leffler star. Examples * The Mittag-Leffler star of the complex exponential function defined in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Continuation
In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where an infinite series representation in terms of which it is initially defined becomes divergent. The step-wise continuation technique may, however, come up against difficulties. These may have an essentially topological nature, leading to inconsistencies (defining more than one value). They may alternatively have to do with the presence of singularities. The case of several complex variables is rather different, since singularities then need not be isolated points, and its investigation was a major reason for the development of sheaf cohomology. Initial discussion Suppose ''f'' is an analytic function defined on a non-empty open subset ''U'' of the complex plane If ''V'' is a larger open subset of containing ''U'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows a geometric interpretation of complex numbers. Under addition, they add like vectors. The multiplication of two complex numbers can be expressed more easily in polar coordinates—the magnitude or ''modulus'' of the product is the product of the two absolute values, or moduli, and the angle or ''argument'' of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a rotation. The complex plane is sometimes known as the Argand plane or Gauss plane. Notational conventions Complex numbers In complex analysis, the complex numbers are customarily represented by the symbol ''z'', which can be separated into its real (''x'') an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1 + 1 + 1 + 1 + · · ·
1 (one, unit, unity) is a number representing a single or the only entity. 1 is also a numerical digit and represents a single unit (measurement), unit of counting or measurement. For example, a line segment of ''unit length'' is a line segment of length 1. In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest Positive number, positive integer. It is also sometimes considered the first of the sequence (mathematics), infinite sequence of natural numbers, followed by 2, although by other definitions 1 is the second natural number, following 0. The fundamental mathematical property of 1 is to be a multiplicative identity, meaning that any number multiplied by 1 equals the same number. Most if not all properties of 1 can be deduced from this. In advanced mathematics, a multiplicative identity is often denoted 1, even if it is not a number. 1 is by convention not considered a prime number; this was not universally ac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Geometric Series
In mathematics, a geometric series is the sum of an infinite number of terms that have a constant ratio between successive terms. For example, the series :\frac \,+\, \frac \,+\, \frac \,+\, \frac \,+\, \cdots is geometric, because each successive term can be obtained by multiplying the previous term by 1/2. In general, a geometric series is written as a + ar + ar^2 + ar^3 + ..., where a is the coefficient of each term and r is the common ratio between adjacent terms. The geometric series had an important role in the early development of calculus, is used throughout mathematics, and can serve as an introduction to frequently used mathematical tools such as the Taylor series, the complex Fourier series, and the matrix exponential. The name geometric series indicates each term is the geometric mean of its two neighboring terms, similar to how the name arithmetic series indicates each term is the arithmetic mean of its two neighboring terms. The sequence of geometric series t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




2 (number)
2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures. Evolution Arabic digit The digit used in the modern Western world to represent the number 2 traces its roots back to the Indic Brahmic script, where "2" was written as two horizontal lines. The modern Chinese and Japanese languages (and Korean Hanja) still use this method. The Gupta script rotated the two lines 45 degrees, making them diagonal. The top line was sometimes also shortened and had its bottom end curve towards the center of the bottom line. In the Nagari script, the top line was written more like a curve connecting to the bottom line. In the Arabic Ghubar writing, the bottom line was completely vertical, and the digit looked like a dotless closing question mark. Restoring the bottom line to its original hori ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]