Digital Circuit
In theoretical computer science, a circuit is a model of computation in which input values proceed through a sequence of gates, each of which computes a function. Circuits of this kind provide a generalization of Boolean circuits and a mathematical model for digital logic circuits. Circuits are defined by the gates they contain and the values the gates can produce. For example, the values in a Boolean circuit are boolean values, and the circuit includes conjunction, disjunction, and negation gates. The values in an integer circuit are sets of integers and the gates compute set union, set intersection, and set complement, as well as the arithmetic operations addition and multiplication. Formal definition A circuit is a triple (M, L, G), where * M is a set of values, * L is a set of gate labels, each of which is a function from M^ to M for some nonnegative integer i (where i represents the number of inputs to the gate), and * G is a labelled directed acyclic graph ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Theoretical Computer Science
computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the theoretical areas precisely. The ACM's Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved. Information theory was added to the field with a 1948 mathematical theory of communication by Claude Shannon. In the same decade, Donald Hebb introduced a mathematical model of learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of neural networks and parallel distributed processing were established. I ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Multiplication
Multiplication (often denoted by the Multiplication sign, cross symbol , by the midline #Notation and terminology, dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four Elementary arithmetic, elementary Operation (mathematics), mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''product (mathematics), product''. The multiplication of Natural number, whole numbers may be thought of as Multiplication and repeated addition, repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the ''multiplicand'', as the quantity of the other one, the ''multiplier''. Both numbers can be referred to as ''factors''. :a\times b = \underbrace_ For example, 4 multiplied by 3, often written as 3 \times 4 and spoken as "3 times 4", can be calculated by adding 3 copies of 4 t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

AC (complexity)
In circuit complexity, AC is a complexity class hierarchy. Each class, ACi, consists of the languages recognized by Boolean circuits with depth O(\log^i n) and a polynomial number of unlimited fanin AND and OR gates. The name "AC" was chosen by analogy to NC, with the "A" in the name standing for "alternating" and referring both to the alternation between the AND and OR gates in the circuits and to alternating Turing machines., page 2718. The smallest AC class is AC0, consisting of constantdepth unlimited fanin circuits. The total hierarchy of AC classes is defined as \mbox = \bigcup_ \mbox^i Relation to NC The AC classes are related to the NC classes, which are defined similarly, but with gates having only constant fanin. For each ''i'', we have :\mbox^i \subseteq \mbox^i \subseteq \mbox^. As an immediate consequence of this, we have that NC = AC. It is known that inclusion is strict for ''i'' = 0. Variations The power of the AC classes can be affected by addi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

NC (complexity)
In computational complexity theory, the class NC (for "Nick's Class") is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem with input size ''n'' is in NC if there exist constants ''c'' and ''k'' such that it can be solved in time using parallel processors. Stephen Cook coined the name "Nick's class" after Nick Pippenger, who had done extensive research on circuits with polylogarithmic depth and polynomial size.Arora & Barak (2009) p.120 Just as the class P can be thought of as the tractable problems (Cobham's thesis), so NC can be thought of as the problems that can be efficiently solved on a parallel computer.Arora & Barak (2009) p.118 NC is a subset of P because polylogarithmic parallel computations can be simulated by polynomialtime sequential ones. It is unknown whether NC = P, but most researchers suspect this to be false, meaning that there are probably some tractable ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Complexity Class
In computational complexity theory, a complexity class is a set of computational problems of related resourcebased complexity. The two most commonly analyzed resources are time and memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time or memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements. For instance, the class P is the set of decision problems solvable by a deterministic Turing machine in polynomial time. There are, however, many complexity classes defined in terms of other types of problems (e.g. counting problems and function problems) and using other models of computation (e.g. probabilistic Turing machines, interactive proof systems, Boolean circuits, and quantum computers). The study of the relationships between complexity classes is ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Circuits Over Sets Of Natural Numbers
Circuits over natural numbers are a mathematical model used in studying computational complexity theory. They are a special case of circuits. The object is a labeled directed acyclic graph the nodes of which evaluate to sets of natural numbers, the leaves are finite sets, and the gates are set operations or arithmetic operations. As an algorithmic problem, the problem is to find if a given natural number is an element of the output node or if two circuits compute the same set. Decidability is still an open question. Formal definition A natural number circuit is a circuit, i.e. a labelled directed acyclic graph of indegree at most 2. The nodes of indegree 0, the leaves, are finite sets of natural numbers, the labels of the nodes of indegree 1 are −, where \overline=\ and the labels of the nodes of indegree 2 are +, ×, ∪ and ∩, where A+B=\, A\times B=\ and ∪ and ∩ with the usual set meaning. The subset of circuits which do not use all of the possible lab ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Arithmetic Circuit Complexity
In computational complexity theory, ''arithmetic circuits'' are the standard model for computing polynomials. Informally, an arithmetic circuit takes as inputs either variables or numbers, and is allowed to either add or multiply two expressions it has already computed. Arithmetic circuits provide a formal way to understand the complexity of computing polynomials. The basic type of question in this line of research is "what is the most efficient way to compute a given polynomial f?" Definitions An ''arithmetic circuit'' C over the field F and the set of variables x_1, \ldots, x_n is a directed acyclic graph as follows. Every node in it with indegree zero is called an ''input gate'' and is labeled by either a variable x_i or a field element in F. Every other gate is labeled by either + or \times; in the first case it is a ''sum'' gate and in the second a ''product'' gate. An ''arithmetic formula'' is a circuit in which every gate has outdegree one (and so the underlying graph is a ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Boolean Function
In mathematics, a Boolean function is a function whose arguments and result assume values from a twoelement set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form f:\^k \to \, where \ is known as the Boolean domain and k is a nonnegative integer called the arity of the function. In the case where k=0, the function is a constant element of \. A Boolean function with multiple outputs, f:\^k \to \^m with m>1 is a ''vectorial'' or ''vectorvalued'' Boolean function (an Sbox in symmetric cryptography). There are 2^ different Boolean functions with k arguments; equal to the number of different truth tables with 2^k entries. Every kary Boolean function can be expressed as a propositional formula in k variables x_1,...,x_k, and two propositional formul ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Circuit Complexity
In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits C_,C_,\ldots (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes. For example, a prominent circuit class P/poly consists of Boolean functions computable by circuits of polynomial size. Proving that \mathsf\not\subseteq \mathsf would separate P and NP (see below). Complexity classes defined in terms of Boolean circuits include AC0, AC, TC0, NC1, NC, and P/poly. Size and depth A Boolean circuit with n input bits is a directed acyclic graph in which every node (usually called ''gates'' in this context) is either an input node of indegree 0 lab ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Decidable Language
In mathematics, logic and computer science, a formal language (a set of finite sequences of symbols taken from a fixed alphabet) is called recursive if it is a recursive subset of the set of all possible finite sequences over the alphabet of the language. Equivalently, a formal language is recursive if there exists a total Turing machine (a Turing machine that halts for every given input) that, when given a finite sequence of symbols as input, accepts it if it belongs to the language and rejects it otherwise. Recursive languages are also called decidable. The concept of decidability may be extended to other models of computation. For example, one may speak of languages decidable on a nondeterministic Turing machine. Therefore, whenever an ambiguity is possible, the synonym used for "recursive language" is Turingdecidable language, rather than simply ''decidable''. The class of all recursive languages is often called R, although this name is also used for the class RP. Thi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Pcomplete
In computational complexity theory, a decision problem is Pcomplete (complete for the complexity class P) if it is in P and every problem in P can be reduced to it by an appropriate reduction. The notion of Pcomplete decision problems is useful in the analysis of: * which problems are difficult to parallelize effectively, * which problems are difficult to solve in limited space. specifically when stronger notions of reducibility than polytimereducibility are considered. The specific type of reduction used varies and may affect the exact set of problems. Generically, reductions stronger than polynomialtime reductions are used, since all languages in P (except the empty language and the language of all strings) are Pcomplete under polynomialtime reductions. If we use NC reductions, that is, reductions which can operate in polylogarithmic time on a parallel computer with a polynomial number of processors, then all Pcomplete problems lie outside NC and so cannot be effecti ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Longest Path
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph. A path is called ''simple'' if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges. In contrast to the shortest path problem, which can be solved in polynomial time in graphs without negativeweight cycles, the longest path problem is NPhard and the decision version of the problem, which asks whether a path exists of at least some given length, is NPcomplete. This means that the decision problem cannot be solved in polynomial time for arbitrary graphs unless P = NP. Stronger hardness results are also known showing that it is difficult to approximate. However, it has a linear time solution for directed acyclic graphs, which has important applications in finding the critical path in scheduling problems. NPhard ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 