HOME
*





Difference Quotient
In single-variable calculus, the difference quotient is usually the name for the expression : \frac which when taken to the limit as ''h'' approaches 0 gives the derivative of the function ''f''. The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (''x'' + ''h'') - ''x'' = ''h'' in this case). The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length ''h''). The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change. By a slight change in notation (and viewpoint), for an interval 'a'', ''b'' the difference quotient : \frac is called the mean (or average) value of the derivative of ''f'' over the interval 'a'', ''b'' This name is justified by the mean value theorem, which states that for a differentiable function '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. It has two major branches, differential calculus and integral calculus; the former concerns instantaneous rates of change, and the slopes of curves, while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence of infinite sequences and infinite series to a well-defined limit. Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Later work, including codifying the idea of limits, put these developments on a more solid conceptual footing. Today, calculus has widespread uses in scienc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pierre De Fermat
Pierre de Fermat (; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of differential calculus, then unknown, and his research into number theory. He made notable contributions to analytic geometry, probability, and optics. He is best known for his Fermat's principle for light propagation and his Fermat's Last Theorem in number theory, which he described in a note at the margin of a copy of Diophantus' '' Arithmetica''. He was also a lawyer at the '' Parlement'' of Toulouse, France. Biography Fermat was born in 1607 in Beaumont-de-Lomagne, France—the late 15th-century mansion where Fermat was born is now a museum. He was from Gascony, where his father, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectangle Method
In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann. One very common application is approximating the area of functions or lines on a graph, but also the length of curves and other approximations. The sum is calculated by partitioning the region into shapes (rectangles, trapezoids, parabolas, or cubics) that together form a region that is similar to the region being measured, then calculating the area for each of these shapes, and finally adding all of these small areas together. This approach can be used to find a numerical approximation for a definite integral even if the fundamental theorem of calculus does not make it easy to find a closed-form solution. Because the region by the small shapes is usually not exactly the same shape as the region being measured, the Riemann sum will differ from the area being measured. This error can be reduced by dividing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Newton Polynomial
In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, is an interpolation polynomial for a given set of data points. The Newton polynomial is sometimes called Newton's divided differences interpolation polynomial because the coefficients of the polynomial are calculated using Newton's divided differences method. Definition Given a set of ''k'' + 1 data points :(x_0, y_0),\ldots,(x_j, y_j),\ldots,(x_k, y_k) where no two ''x''''j'' are the same, the Newton interpolation polynomial is a linear combination of Newton basis polynomials :N(x) := \sum_^ a_ n_(x) with the Newton basis polynomials defined as :n_j(x) := \prod_^ (x - x_i) for ''j'' > 0 and n_0(x) \equiv 1. The coefficients are defined as :a_j := _0,\ldots,y_j/math> where : _0,\ldots,y_j/math> is the notation for divided differences. Thus the Newton polynomial can be written as :N(x) = _0+ _0,y_1x-x_0) + \cdots + _0,\ldots,y_kx-x_0)(x-x_1)\cdots( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fermat Theory
In category theory, a Lawvere theory (named after American mathematician William Lawvere) is a category that can be considered a categorical counterpart of the notion of an equational theory. Definition Let \aleph_0 be a skeleton of the category FinSet of finite sets and functions. Formally, a Lawvere theory consists of a small category ''L'' with (strictly associative) finite products and a strict identity-on-objects functor I:\aleph_0^\text\rightarrow L preserving finite products. A model of a Lawvere theory in a category ''C'' with finite products is a finite-product preserving functor . A morphism of models where ''M'' and ''N'' are models of ''L'' is a natural transformation of functors. Category of Lawvere theories A map between Lawvere theories (''L'', ''I'') and (''L''′, ''I''′) is a finite-product preserving functor that commutes with ''I'' and ''I''′. Such a map is commonly seen as an interpretation of (''L'', ''I'') in (''L''′, ''I''′ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Divided Differences
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. Divided differences is a recursive division process. Given a sequence of data points (x_0, y_0),\ldots,(x_, y_), the method calculates the coefficients of the interpolation polynomial of these points in the Newton form. Definition Given ''n'' + 1 data points :(x_0, y_0),\ldots,(x_, y_) where the x_k are assumed to be pairwise distinct, the forward divided differences are defined as: : _k:= y_k, \qquad k \in \ : _k,\ldots,y_:= \frac, \qquad k\in\,\ j\in\. To make the recursive process of computation clearer, the divided differences can be put in tabular form, where the columns correspond to the value of ''j'' above, and each entry in the table is computed from the difference of the entries to its immediate lower lef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Multiple Integral
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, or . Integrals of a function of two variables over a region in \mathbb^2 (the real-number plane) are called double integrals, and integrals of a function of three variables over a region in \mathbb^3 (real-number 3D space) are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration. Introduction Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the -axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where ) and the plane which contains its domain. If there are more variables, a multiple integral will yield hypervolumes of multidim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ASCII
ASCII ( ), abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Because of technical limitations of computer systems at the time it was invented, ASCII has just 128 code points, of which only 95 are , which severely limited its scope. All modern computer systems instead use Unicode, which has millions of code points, but the first 128 of these are the same as the ASCII set. The Internet Assigned Numbers Authority (IANA) prefers the name US-ASCII for this character encoding. ASCII is one of the IEEE milestones. Overview ASCII was developed from telegraph code. Its first commercial use was as a seven-bit teleprinter code promoted by Bell data services. Work on the ASCII standard began in May 1961, with the first meeting of the American Standards Association's (ASA) (now the American National Standards I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divaricate
Divaricate means branching, or having separation or a degree of separation. The angle between branches is wide. In botany In botany, the term is often used to describe the branching pattern of plants. Plants are said to be divaricating when their growth form is such that each internode diverges widely from the previous internode producing an often tightly interlaced shrub or small tree. Of the 72 small leaved shrubs found on the Banks Peninsula, for example, some 38 are divaricating. In medicine See also * Diastasis (pathology), a medical term for separation of parts * Laciniate The following is a list of terms which are used to describe leaf plant morphology, morphology in the description and taxonomy (biology), taxonomy of plants. Leaves may be simple (a single leaf blade or lamina) or compound (with several leaflet (bo ... References Plant morphology Medical terminology {{botany-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the "instantaneous rate of change", the ratio of the instantaneous change in the dependent variable to that of the independent variable. Derivatives can be generalized to functions of several real variables. In this generalization, the de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leibniz Notation
In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols and to represent infinitely small (or infinitesimal) increments of and , respectively, just as and represent finite increments of and , respectively. Consider as a function of a variable , or = . If this is the case, then the derivative of with respect to , which later came to be viewed as the limit :\lim_\frac = \lim_\frac, was, according to Leibniz, the quotient of an infinitesimal increment of by an infinitesimal increment of , or :\frac=f'(x), where the right hand side is Joseph-Louis Lagrange's notation for the derivative of at . The infinitesimal increments are called . Related to this is the integral in which the infinitesimal increments are summed (e.g. to compute lengths, areas and volumes as sums of tiny pieces), for which Leibniz also supplied a closely related notation involving the same differentials, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Divided Differences
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. Divided differences is a recursive division process. Given a sequence of data points (x_0, y_0),\ldots,(x_, y_), the method calculates the coefficients of the interpolation polynomial of these points in the Newton form. Definition Given ''n'' + 1 data points :(x_0, y_0),\ldots,(x_, y_) where the x_k are assumed to be pairwise distinct, the forward divided differences are defined as: : _k:= y_k, \qquad k \in \ : _k,\ldots,y_:= \frac, \qquad k\in\,\ j\in\. To make the recursive process of computation clearer, the divided differences can be put in tabular form, where the columns correspond to the value of ''j'' above, and each entry in the table is computed from the difference of the entries to its immediate lower lef ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]