Dinatural Transformation
In category theory, a branch of mathematics, a dinatural transformation \alpha between two functors :S,T : C^\times C\to D, written :\alpha : S\ddot\to T, is a function that to every object c of C associates an arrow :\alpha_c : S(c,c)\to T(c,c) of D and satisfies the following coherence property: for every morphism f:c\to c' of C the diagram commutes. The composition of two dinatural transformations need not be dinatural. See also * Extranatural transformation *Natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ... Notes References * * External links * Functors {{categorytheory-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Category Theory
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in most areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient space (other), quotient spaces, direct products, completion, and duality (mathematics), duality. Many areas of computer science also rely on category theory, such as functional programming and Semantics (computer science), semantics. A category (mathematics), category is formed by two sorts of mathematical object, objects: the object (category theory), objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. Metapho ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each Mathematical object, object X in ''C'' to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Coherence Property
In mathematics, specifically in homotopy theory and (higher) category theory, coherency is the standard that equalities or diagrams must satisfy when they hold "up to homotopy" or "up to isomorphism". The adjectives such as "pseudo-" and "lax-" are used to refer to the fact equalities are weakened in coherent ways; e.g., pseudo-functor, pseudoalgebra. Coherent isomorphism In some situations, isomorphisms need to be chosen in a coherent way. Often, this can be achieved by choosing canonical isomorphisms. But in some cases, such as prestacks, there can be several canonical isomorphisms and there might not be an obvious choice among them. In practice, coherent isomorphisms arise by weakening equalities; e.g., strict associativity may be replaced by associativity via coherent isomorphisms. For example, via this process, one gets the notion of a weak 2-category from that of a strict 2-category. Replacing coherent isomorphisms by equalities is usually called strictification or re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Extranatural Transformation
(dually co-wedges and co-ends), by setting F (dually G) constant. Extranatural transformations can be defined in terms of dinatural transformations, of which they are a special case. See also * Dinatural transformation In category theory, a branch of mathematics, a dinatural transformation \alpha between two functors :S,T : C^\times C\to D, written :\alpha : S\ddot\to T, is a function that to every object c of C associates an arrow :\alpha_c : S(c,c)\to T(c,c ... References External links * {{nlab, id=extranatural+transformation Higher category theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Natural Transformation
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D (both from C to D), then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |