Differencing
In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively. All these models are fitted to time series in order to better understand it and predict future values. The purpose of these generalizations is to fit the data as well as possible. Specifically, ARMA assumes that the series is stationary, that is, its expected value is constant in time. If instead the series has a trend (but a constant variance/autocovariance), the trend is removed by "differencing", leaving a stationary series. This operation generalizes ARMA and corresponds to the " integrated" part of ARIMA. Analogously, periodic variation is removed by "seasonal differencing". Components As in ARMA, the "autoregressive" () part of ARIMA indicates that the evolving variable of interest is regressed on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stationary Process
In mathematics and statistics, a stationary process (also called a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose statistical properties, such as mean and variance, do not change over time. More formally, the joint probability distribution of the process remains the same when shifted in time. This implies that the process is statistically consistent across different time periods. Because many statistical procedures in time series analysis assume stationarity, non-stationary data are frequently transformed to achieve stationarity before analysis. A common cause of non-stationarity is a trend in the mean, which can be due to either a unit root or a deterministic trend. In the case of a unit root, stochastic shocks have permanent effects, and the process is not mean-reverting. With a deterministic trend, the process is called trend-stationary, and shocks have only transitory effects, with the variable tending towards a determin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order Of Integration
In statistics, the order of integration, denoted ''I''(''d''), of a time series is a summary statistic, which reports the minimum number of differences required to obtain a covariance-stationary series (i.e., a time series whose mean and autocovariance remain constant over time). The order of integration is a key concept in time series analysis, particularly when dealing with non-stationary data that exhibits trends or other forms of non-stationarity. Integration of order ''d'' A time series is integrated of order ''d'' if :(1-L)^d X_t \ is a stationary process, where L is the lag operator and 1-L is the first difference, i.e. : (1-L) X_t = X_t - X_ = \Delta X. In other words, a process is integrated to order ''d'' if taking repeated differences ''d'' times yields a stationary process. In particular, if a series is integrated of order 0, then (1-L)^0 X_t = X_t is stationary. Constructing an integrated series An ''I''(''d'') process can be constructed by summin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Unit Root
In probability theory and statistics, a unit root is a feature of some stochastic processes (such as random walks) that can cause problems in statistical inference involving time series models. A linear stochastic process has a unit root if 1 is a root of the process's characteristic equation. Such a process is non-stationary but does not always have a trend. If the other roots of the characteristic equation lie inside the unit circle—that is, have a modulus (absolute value) less than one—then the first difference of the process will be stationary; otherwise, the process will need to be differenced multiple times to become stationary. If there are ''d'' unit roots, the process will have to be differenced ''d'' times in order to make it stationary. Due to this characteristic, unit root processes are also called difference stationary. Unit root processes may sometimes be confused with trend-stationary processes; while they share many properties, they are different in m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trend Stationary
In the statistical analysis of time series, a trend-stationary process is a stochastic process from which an underlying trend (function solely of time) can be removed, leaving a stationary process. The trend does not have to be linear. Conversely, if the process requires differencing to be made stationary, then it is called difference stationary and possesses one or more unit roots. Those two concepts may sometimes be confused, but while they share many properties, they are different in many aspects. It is possible for a time series to be non-stationary, yet have no unit root and be trend-stationary. In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent impact on the mean (i.e. no convergence over ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
High-pass Filter
A high-pass filter (HPF) is an electronic filter that passes signals with a frequency higher than a certain cutoff frequency and attenuates signals with frequencies lower than the cutoff frequency. The amount of attenuation for each frequency depends on the filter design. A high-pass filter is usually modeled as a linear time-invariant system. It is sometimes called a low-cut filter or bass-cut filter in the context of audio engineering. High-pass filters have many uses, such as blocking DC from circuitry sensitive to non-zero average voltages or radio frequency devices. They can also be used in conjunction with a low-pass filter to produce a band-pass filter. In the optical domain filters are often characterised by wavelength rather than frequency. High-pass and low-pass have the opposite meanings, with a "high-pass" filter (more commonly "short-pass") passing only ''shorter'' wavelengths (higher frequencies), and vice versa for "low-pass" (more commonly "long-pass"). De ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deseasonalization
Seasonal adjustment or deseasonalization is a statistical method for removing the Seasonality, seasonal component of a time series. It is usually done when wanting to analyse the trend, and cyclical deviations from trend, of a time series independently of the seasonal components. Many economic phenomena have seasonal cycles, such as Pork cycle, agricultural production, (crop yields fluctuate with the seasons) and consumer consumption (increased personal spending leading up to Christmas). It is necessary to adjust for this component in order to understand underlying trends in the economy, so official statistics are often adjusted to remove seasonal components. Typically, seasonally adjusted data is reported for unemployment rates to reveal the underlying trends and cycles in labor markets. Time series components The investigation of many economic time series becomes problematic due to seasonal fluctuations. Time series are made up of four components: *S_t: The seasonal component * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fourier Analysis
In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics. In the sciences and engineering, the process of decomposing a function into oscillatory components is often called Fourier analysis, while the operation of rebuilding the function from these pieces is known as Fourier synthesis. For example, determining what component frequencies are present in a musical note would involve computing the Fourier transform of a sampled musical note. One could then re-synthesize the same sound by including the frequency components as revealed in the Fourier analysis. In mathematics, the term ''Fourier an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Time Series Analysis
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average. A time series is very frequently plotted via a run chart (which is a temporal line chart). Time series are used in statistics, signal processing, pattern recognition, econometrics, mathematical finance, weather forecasting, earthquake prediction, electroencephalography, control engineering, astronomy, communications engineering, and largely in any domain of applied science and engineering which involves temporal measurements. Time series ''analysis'' comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series ''forec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Comb Filter
In signal processing, a comb filter is a Filter (signal processing), filter implemented by adding a delayed version of a signal processing, signal to itself, causing constructive and destructive Interference (wave propagation), interference. The frequency response of a comb filter consists of a series of regularly spaced notches in between regularly spaced ''peaks'' (sometimes called ''teeth'') giving the appearance of a comb. Comb filters exist in two forms, ''feedforward'' and ''feedback''; which refer to the direction in which signals are delayed before they are added to the input. Comb filters may be implemented in discrete time or continuous time forms which are very similar. Applications Comb filters are employed in a variety of signal processing applications, including: * Cascaded integrator–comb filter, Cascaded integrator–comb (CIC) filters, commonly used for anti-aliasing filter, anti-aliasing during interpolation and decimation (signal processing), decimation o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Independent And Identically-distributed Random Variables
Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in Pennsylvania, United States * Independentes (English: Independents), a Portuguese artist group Music Groups, labels, and genres * Independent music, a number of genres associated with independent labels * Independent record label, a record label not associated with a major label * Independent Albums, American albums chart Albums * ''Independent'' (Ai album), 2012 * ''Independent'' (Faze album), 2006 * ''Independent'' (Sacred Reich album), 1993 Songs * "Independent" (song), a 2007 song by Webbie * "Independent", a 2002 song by Ayumi Hamasaki from '' H'' News media organizations * Independent Media Center (also known as Indymedia or IMC), an open publishing network of journalist collectives that report on political and social issues, e.g., in ''The Indypendent'' newspaper of NYC * ITV (TV network) (Independent Television ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Autoregressive–moving-average Model
In the statistical analysis of time series, autoregressive–moving-average (ARMA) models are a way to describe a (weakly) stationary stochastic process using autoregression (AR) and a moving average (MA), each with a polynomial. They are a tool for understanding a series and predicting future values. AR involves regressing the variable on its own lagged (i.e., past) values. MA involves modeling the error as a linear combination of error terms occurring contemporaneously and at various times in the past. The model is usually denoted ARMA(''p'', ''q''), where ''p'' is the order of AR and ''q'' is the order of MA. The general ARMA model was described in the 1951 thesis of Peter Whittle, ''Hypothesis testing in time series analysis'', and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins. ARMA models can be estimated by using the Box–Jenkins method. Mathematical formulation Autoregressive model The notation AR(''p'') refers to the autoregressi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |