HOME





Descent Theory
In mathematics, the idea of descent extends the intuitive idea of 'gluing' in topology. Since the topologists' glue is the use of equivalence relations on topological spaces, the theory starts with some ideas on identification. Descent of vector bundles The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start. Suppose is a topological space covered by open sets . Let be the disjoint union of the , so that there is a natural mapping :p: Y \rightarrow X. We think of as 'above' , with the projection 'down' onto . With this language, ''descent'' implies a vector bundle on (so, a bundle given on each ), and our concern is to 'glue' those bundles , to make a single bundle on . What we mean is that should, when restricted to , give back , up to a bundle isomorphism. The data needed is then this: on each overlap :X_, intersection of and , we'll require mappings :f_: V_i \rightarrow V_j to use to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Tangent Bundle
A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of manifold the tangent spaces and have no common vector. This is graphically illustrated in the accompanying picture for tangent bundle of circle , see Examples section: all tangents to a circle lie in the plane of the circle. In order to make them disjoint it is necessary to align them in a plane perpendicular to the plane of the circle. of the tangent spaces of M . That is, : \begin TM &= \bigsqcup_ T_xM \\ &= \bigcup_ \left\ \times T_xM \\ &= \bigcup_ \left\ \\ &= \left\ \end where T_x M denotes the tangent space to M at the point x . So, an el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Stack (mathematics)
In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf (mathematics), sheaf that takes values in category (mathematics), categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphism, isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis. In a more general set-up the restrictions are replaced with Pullback (category theory), pullbacks; fibred category, fibred categories then make a good framework to discuss the possibility of such gluing. The intuitive meaning of a stack is that it is a fibred category such that "all possible gluings work". The specification of gluings requires a definition of coverings with regard to which the gluings can be considered. It turns out that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Grothendieck Connection
In algebraic geometry and synthetic differential geometry, a Grothendieck connection is a way of viewing connections in terms of descent data from infinitesimal neighbourhoods of the diagonal. Introduction and motivation The Grothendieck connection is a generalization of the Gauss–Manin connection constructed in a manner analogous to that in which the Ehresmann connection generalizes the Koszul connection. The construction itself must satisfy a requirement of ''geometric invariance'', which may be regarded as the analog of covariance for a wider class of structures including the schemes of algebraic geometry. Thus the connection in a certain sense must live in a natural sheaf on a Grothendieck topology. In this section, we discuss how to describe an Ehresmann connection in sheaf-theoretic terms as a Grothendieck connection. Let M be a manifold and \pi : E \to M a surjective submersion, so that E is a manifold fibred over M. Let J^1(M, E) be the first-order jet bundle of sect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Moduli Problem
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Bernhard Riemann first used the term "moduli" in 1857. Motivation Moduli spaces are spaces of solutions of geometric classification problems. That is, the points of a moduli space correspond to solutions of geometric proble ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Representable Functor
In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures (i.e. sets and functions) allowing one to utilize, as much as possible, knowledge about the category of sets in other settings. From another point of view, representable functors for a category ''C'' are the functors ''given'' with ''C''. Their theory is a vast generalisation of upper sets in posets, and Yoneda's representability theorem generalizes Cayley's theorem in group theory. Definition Let C be a locally small category and let Set be the category of sets. For each object ''A'' of C let Hom(''A'',–) be the hom functor that maps object ''X'' to the set Hom(''A'',''X''). A functor ''F'' : C → Set is said to be representable if it is naturally isomorphic to Hom(''A'',–) for some object ''A'' of C. A representation of ''F'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Fondements De La Géometrie Algébrique
''Fondements de la Géometrie Algébrique'' (''FGA'') is a book that collected together seminar notes of Alexander Grothendieck. It is an important source for his pioneering work on scheme theory, which laid foundations for algebraic geometry in its modern technical developments. The title is a translation of the title of André Weil's book ''Foundations of Algebraic Geometry.'' It contained material on descent theory, and existence theorems including that for the Hilbert scheme. The ''Technique de descente et théorèmes d'existence en géometrie algébrique'' is one series of seminars within ''FGA''. Like the bulk of Grothendieck's work of the IHÉS period, duplicated notes were circulated, but the publication was not as a conventional book. Contents These are Séminaire Bourbaki notes, by number, from the years 1957 to 1962.Fondements de la géométrie algébrique. Commentaires éminaire Bourbaki, t. 14, 1961/62, ComplémentThéorème de dualité pour les faisceaux algébr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Alexander Grothendieck
Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 – 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called Grothendieck's relative point of view, "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century. Grothendieck began his productive and public career as a mathematician in 1949. In 1958, he was appointed a research professor at the Institut des Hautes Études Scientifiques, Institut des hautes études scientifiques (IHÉS) and remained there until 1970, when, driven by personal and political convictions, he left following a dispute over military funding. He receive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Beck's Monadicity Theorem
In category theory, a branch of mathematics, Beck's monadicity theorem gives a criterion that characterises monadic functors, introduced by in about 1964. It is often stated in dual form for comonads. It is sometimes called the Beck tripleability theorem because of the older term ''triple'' for a monad. Beck's monadicity theorem asserts that a functor :U: C \to D is monadic if and only if # ''U'' has a left adjoint; # ''U'' reflects isomorphisms (if ''U''(''f'') is an isomorphism then so is ''f''); and # ''C'' has coequalizers of ''U''-split parallel pairs (those parallel pairs of morphisms in ''C'', which ''U'' sends to pairs having a split coequalizer in ''D''), and ''U'' preserves those coequalizers. There are several variations of Beck's theorem: if ''U'' has a left adjoint then any of the following conditions ensure that ''U'' is monadic: *''U'' reflects isomorphisms and ''C'' has coequalizers of reflexive pairs (those with a common right inverse) and ''U'' preserves th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Comonad
In category theory, a branch of mathematics, a monad is a triple (T, \eta, \mu) consisting of a functor ''T'' from a category to itself and two natural transformations \eta, \mu that satisfy the conditions like associativity. For example, if F, G are functors adjoint to each other, then T = G \circ F together with \eta, \mu determined by the adjoint relation is a monad. In concise terms, a monad is a monoid in the category of endofunctors of some fixed category (an endofunctor is a functor mapping a category to itself). According to John Baez, a monad can be considered at least in two ways: https://golem.ph.utexas.edu/category/2009/07/the_monads_hurt_my_head_but_no.html # A monad as a generalized monoid; this is clear since a monad is a monoid in a certain category, # A monad as a tool for studying algebraic gadgets; for example, a group can be described by a certain monad. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on par ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic variety, algebraic varieties, which are geometric manifestations of solution set, solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are line (geometry), lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscate of Bernoulli, lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular point of a curve, singular p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]