De Gua's Theorem
In mathematics, De Gua's theorem is a three-dimensional analog of the Pythagorean theorem named after Jean Paul de Gua de Malves. It states that if a tetrahedron has a right-angle corner (like the corner of a cube), then the square of the area of the face opposite the right-angle corner is the sum of the squares of the areas of the other three faces: A_^2 = A_^2+A_^2+A_^2 De Gua's theorem can be applied for proving a special case of Heron's formula. Generalizations The Pythagorean theorem and de Gua's theorem are special cases () of a general theorem about ''n''-simplices with a right-angle corner, proved by P. S. Donchian and H. S. M. Coxeter in 1935. This, in turn, is a special case of a yet more general theorem by Donald R. Conant and William A. Beyer (1974), which can be stated as follows. Let ''U'' be a measurable subset of a ''k''-dimensional affine subspace of \mathbb^n (so k \le n). For any subset I \subseteq \ with exactly ''k'' elements, let U_I be the orthogona ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hausdorff Measure
In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in \R^n or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite. Likewise, the one-dimensional Hausdorff measure of a simple curve in \R^n is equal to the length of the curve, and the two-dimensional Hausdorff measure of a Lebesgue measure#Construction of the Lebesgue measure, Lebesgue-measurable subset of \R^2 is proportional to the area of the set. Thus, the concept of the Hausdorff measure generalizes the Lebesgue measure and its notions of counting, length, and area. It also generalizes volume. In fact, there are ''d''-dimensional Hausdorff measures for any ''d'' ≥ 0, which is n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Theorems About Polyhedron
In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formalized in order to allow mathematical reasoning ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Bivector
In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. Considering a scalar as a degree-zero quantity and a vector as a degree-one quantity, a bivector is of degree two. Bivectors have applications in many areas of mathematics and physics. They are related to complex numbers in two dimensions and to both pseudovectors and vector quaternions in three dimensions. They can be used to generate rotations in a space of any number of dimensions, and are a useful tool for classifying such rotations. Geometrically, a simple bivector can be interpreted as characterizing a directed plane segment (or oriented plane segment), much as vectors can be thought of as characterizing '' directed line segments''. The bivector has an ''attitude'' (or direction) of the plane spanned by and , has an area that is a scalar multiple of any reference plane segment with the same attitude (and in geometric algebra, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Projected Area
Projected area is the two dimensional area measurement of a three-dimensional object by projecting its shape on to an arbitrary plane. This is often used in mechanical engineering and architectural engineering related fields, especially for hardness testing, axial stress, wind pressures, and terminal velocity. The geometrical definition of a projected area is: "the rectilinear parallel projection of a surface of any shape onto a plane". This translates into the equation: A_\text = \int_ \cos \, dA where A is the original area, and \beta is the angle between the normal to the local plane and the line of sight to the surface A. For basic shapes the results are listed in the table below. See also *[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Vector Area
In 3-dimensional geometry and vector calculus, an area vector is a vector combining an area quantity with a direction, thus representing an oriented area in three dimensions. Every bounded surface in three dimensions can be associated with a unique area vector called its vector area. It is equal to the surface integral of the surface normal, and distinct from the usual ( scalar) surface area. Vector area can be seen as the three dimensional generalization of signed area in two dimensions. Definition For a finite planar surface of scalar area and unit normal , the vector area is defined as the unit normal scaled by the area: \mathbf = \hat \mathbfS For an orientable surface composed of a set of flat facet areas, the vector area of the surface is given by \mathbf = \sum_i \hat \mathbf_i S_i where is the unit normal vector to the area . For bounded, oriented curved surfaces that are sufficiently well-behaved, we can still define vector area. First, we split the su ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
René Descartes
René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramount to his method of inquiry, and he connected the previously separate fields of geometry and algebra into analytic geometry. Descartes spent much of his working life in the Dutch Republic, initially serving the Dutch States Army, and later becoming a central intellectual of the Dutch Golden Age. Although he served a Dutch Reformed Church, Protestant state and was later counted as a Deism, deist by critics, Descartes was Roman Catholicism, Roman Catholic. Many elements of Descartes's philosophy have precedents in late Aristotelianism, the Neostoicism, revived Stoicism of the 16th century, or in earlier philosophers like Augustine of Hippo, Augustine. In his natural philosophy, he differed from the Scholasticism, schools on two major point ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Johann Faulhaber
Johann Faulhaber (5 May 1580 – 10 September 1635) was a German mathematician, specifically, a calculator ('':de:Rechenmeister, Rechenmeister''). Biography Born in Ulm, Faulhaber was a trained weaver who later took the role of a surveyor of the city of Ulm. He collaborated with Johannes Kepler and Ludolph van Ceulen. In 1620, while in Ulm, René Descartes, Descartes probably corresponded with Faulhaber to discuss algebraic solutions of polynomial equations. He worked as fortification engineer in various cities (notably Basel, where he was fortification engineer from 1622 to 1624, and Frankfurt), and also worked under Maurice, Prince of Orange in the Netherlands. He also built water wheels in his home town and geometrical instruments for the military. Faulhaber made the first publication of Henry Briggs (mathematician), Henry Briggs's Logarithm in Germany. He is also credited with the first printed solution of equal temperament. He died in Ulm. Faulhaber's major contribution w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Charles De Tinseau D'Amondans
Charles is a masculine given name predominantly found in English and French speaking countries. It is from the French form ''Charles'' of the Proto-Germanic name (in runic alphabet) or ''*karilaz'' (in Latin alphabet), whose meaning was "free man". The Old English descendant of this word was '' Ċearl'' or ''Ċeorl'', as the name of King Cearl of Mercia, that disappeared after the Norman conquest of England. The name was notably borne by Charlemagne (Charles the Great), and was at the time Latinized as ''Karolus'' (as in ''Vita Karoli Magni''), later also as '' Carolus''. Etymology The name's etymology is a Common Germanic noun ''*karilaz'' meaning "free man", which survives in English as churl (James (< Latin ''-us'', see Spanish/ Portuguese ''Carlos''). According to Julius Pokorny, the historical linguist and Indo-European studies, Indo-Europeanist, the root meaning of Charles is "old man", from Proto-Indo-European language, Indo-European *wikt:Appendix:Proto-Indo-Eur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Law Of Cosines
In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles. For a triangle with sides , , and , opposite respective angles , , and (see Fig. 1), the law of cosines states: \begin c^2 &= a^2 + b^2 - 2ab\cos\gamma, \\[3mu] a^2 &= b^2+c^2-2bc\cos\alpha, \\[3mu] b^2 &= a^2+c^2-2ac\cos\beta. \end The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if is a right angle then , and the law of cosines special case, reduces to . The law of cosines is useful for solution of triangles, solving a triangle when all three sides or two sides and their included angle are given. Use in solving triangles The theorem is used in solution of triangles, i.e., to find (see Figure 3): *the third side of a triangle if two sides and the angle between them is known: c = \sqrt\,; *the angles of a triangle if the three sides are known: \gamma = \arccos\l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Origin (mathematics)
In mathematics, the origin of a Euclidean space is a special point, usually denoted by the letter ''O'', used as a fixed point of reference for the geometry of the surrounding space. In physical problems, the choice of origin is often arbitrary, meaning any choice of origin will ultimately give the same answer. This allows one to pick an origin point that makes the mathematics as simple as possible, often by taking advantage of some kind of geometric symmetry. Cartesian coordinates In a Cartesian coordinate system, the origin is the point where the axes of the system intersect.. The origin divides each of these axes into two halves, a positive and a negative semiaxis. Points can then be located with reference to the origin by giving their numerical coordinates—that is, the positions of their projections along each axis, either in the positive or negative direction. The coordinates of the origin are always all zero, for example (0,0) in two dimensions and (0,0,0) in three. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |