Cyclic Quadrilateral
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be ''concyclic''. The center of the circle and its radius are called the ''circumcenter'' and the ''circumradius'' respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case. The word cyclic is from the Ancient Greek (''kuklos''), which means "circle" or "wheel". All triangles have a circumcircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be cyclic is a nonsquare rhombus. The section characterizations below states w ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Cyclic Quadrilateral
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be ''concyclic''. The center of the circle and its radius are called the ''circumcenter'' and the ''circumradius'' respectively. Other names for these quadrilaterals are concyclic quadrilateral and chordal quadrilateral, the latter since the sides of the quadrilateral are chords of the circumcircle. Usually the quadrilateral is assumed to be convex, but there are also crossed cyclic quadrilaterals. The formulas and properties given below are valid in the convex case. The word cyclic is from the Ancient Greek (''kuklos''), which means "circle" or "wheel". All triangles have a circumcircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be cyclic is a nonsquare rhombus. The section characterizations below states w ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Isosceles Trapezoid
In Euclidean geometry, an isosceles trapezoid (isosceles trapezium in British English) is a convex quadrilateral with a line of symmetry bisecting one pair of opposite sides. It is a special case of a trapezoid. Alternatively, it can be defined as a trapezoid in which both legs and both base angles are of equal measure. Note that a nonrectangular parallelogram is not an isosceles trapezoid because of the second condition, or because it has no line of symmetry. In any isosceles trapezoid, two opposite sides (the bases) are parallel, and the two other sides (the legs) are of equal length (properties shared with the parallelogram). The diagonals are also of equal length. The base angles of an isosceles trapezoid are equal in measure (there are in fact two pairs of equal base angles, where one base angle is the supplementary angle of a base angle at the other base). Special cases Rectangles and squares are usually considered to be special cases of isosceles trapezoids though so ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Euclid
Euclid (; grcgre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely dominated the field until the early 19th century. His system, now referred to as Euclidean geometry, involved new innovations in combination with a synthesis of theories from earlier Greek mathematicians, including Eudoxus of Cnidus, Hippocrates of Chios, Thales and Theaetetus. With Archimedes and Apollonius of Perga, Euclid is generally considered among the greatest mathematicians of antiquity, and one of the most influential in the history of mathematics. Very little is known of Euclid's life, and most information comes from the philosophers Proclus and Pappus of Alexandria many centuries later. Until the early Renaissance he was often mistaken for the earlier philosopher Euclid of Megara, causing his biogra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Supplementary Angle
In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles are also formed by the intersection of two planes. These are called dihedral angles. Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection. ''Angle'' is also used to designate the measure of an angle or of a rotation. This measure is the ratio of the length of a circular arc to its radius. In the case of a geometric angle, the arc is centered at the vertex and delimited by the sides. In the case of a rotation, the arc is centered at the center of the rotation and delimited by any other point and its image by the rotation. History and etymology The word ''angle'' comes from the Latin word ''angulus'', meaning "corner"; cognate words are t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Circumcenter
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every polygon has a circumscribed circle. A polygon that does have one is called a cyclic polygon, or sometimes a concyclic polygon because its vertices are concyclic. All triangles, all regular simple polygons, all rectangles, all isosceles trapezoids, and all right kites are cyclic. A related notion is the one of a minimum bounding circle, which is the smallest circle that completely contains the polygon within it, if the circle's center is within the polygon. Every polygon has a unique minimum bounding circle, which may be constructed by a linear time algorithm. Even if a polygon has a circumscribed circle, it may be different from its minimum bounding circle. For example, for an obtuse triangle, the minimum bounding circle has the longest side ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Concurrent Lines
In geometry, lines in a plane or higherdimensional space are said to be concurrent if they intersect at a single point. They are in contrast to parallel lines. Examples Triangles In a triangle, four basic types of sets of concurrent lines are altitudes, angle bisectors, medians, and perpendicular bisectors: * A triangle's altitudes run from each vertex and meet the opposite side at a right angle. The point where the three altitudes meet is the orthocenter. * Angle bisectors are rays running from each vertex of the triangle and bisecting the associated angle. They all meet at the incenter. * Medians connect each vertex of a triangle to the midpoint of the opposite side. The three medians meet at the centroid. * Perpendicular bisectors are lines running out of the midpoints of each side of a triangle at 90 degree angles. The three perpendicular bisectors meet at the circumcenter. Other sets of lines associated with a triangle are concurrent as well. For example: * Any media ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Perpendicular
In elementary geometry, two geometric objects are perpendicular if they intersect at a right angle (90 degrees or π/2 radians). The condition of perpendicularity may be represented graphically using the '' perpendicular symbol'', ⟂. It can be defined between two lines (or two line segments), between a line and a plane, and between two planes. Perpendicularity is one particular instance of the more general mathematical concept of '' orthogonality''; perpendicularity is the orthogonality of classical geometric objects. Thus, in advanced mathematics, the word "perpendicular" is sometimes used to describe much more complicated geometric orthogonality conditions, such as that between a surface and its '' normal vector''. Definitions A line is said to be perpendicular to another line if the two lines intersect at a right angle. Explicitly, a first line is perpendicular to a second line if (1) the two lines meet; and (2) at the point of intersection the straight angle on one s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Harmonic Quadrilateral
In Euclidean geometry, a harmonic quadrilateral, or harmonic quadrangle, is a quadrilateral that can be inscribed in a circle ( cyclic quadrangle) in which the products of the lengths of opposite sides are equal. It has several important properties. Properties Let be a harmonic quadrilateral and the midpoint of diagonal . Then: * Tangents to the circumscribed circle at points and and the straight line either intersect at one point or are mutually parallel. * Angles and are equal. * The bisectors of the angles at and intersect on the diagonal . * A diagonal of the quadrilateral is a symmedian In geometry, symmedians are three particular lines associated with every triangle. They are constructed by taking a median of the triangle (a line connecting a vertex with the midpoint of the opposite side), and reflecting the line over the ... of the angles at and in the triangles ∆ and ∆. * The point of intersection of the diagonals is located towards the sides of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Extangential Quadrilateral
In Euclidean geometry, an extangential quadrilateral is a convex quadrilateral where the ''extensions'' of all four sides are tangent to a circle outside the quadrilateral.Radic, Mirko; Kaliman, Zoran and Kadum, Vladimir, "A condition that a tangential quadrilateral is also a chordal one", ''Mathematical Communications'', 12 (2007) pp. 33–52. It has also been called an exscriptible quadrilateral. The circle is called its ''excircle'', its radius the ''exradius'' and its center the ''excenter'' ( in the figure). The excenter lies at the intersection of six angle bisectors. These are the internal angle bisectors at two opposite vertex angles, the external angle bisectors (supplementary angle bisectors) at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect (see the figure to the right, where four of these six are dotted line segments). The extangential quadrilateral is closely related to the tangentia ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Tangential Quadrilateral
In Euclidean geometry, a tangential quadrilateral (sometimes just tangent quadrilateral) or circumscribed quadrilateral is a convex quadrilateral whose sides all can be tangent to a single circle within the quadrilateral. This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the ''incenter'' and its radius is called the ''inradius''. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called ''circumscribable quadrilaterals'', ''circumscribing quadrilaterals'', and ''circumscriptible quadrilaterals''. Tangential quadrilaterals are a special case of tangential polygons. Other less frequently used names for this class of quadrilaterals are ''inscriptable quadrilateral'', ''inscriptible quadrilateral'', ''inscribable quadrilateral'', ''circumcyclic quadrilateral'', and ''cocyclic quadrilateral''.. Due to the risk of confusion with a quadrilateral that has a circumcircle, which is calle ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Bicentric Quadrilateral
In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and center of these circles are called ''inradius'' and ''circumradius'', and ''incenter'' and ''circumcenter'' respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chordtangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a ''double circle quadrilateral'' and ''double scribed quadrilateral''. If two circles, one within the other, are the incircle and the circumcircle of a bicentric quadrilateral, then every point on the circumcircle is the vertex of a bicentric quadrilateral having the same incircle and circumcircle. This is a special case of Poncelet's porism, which was proved by the French mathematician JeanVictor Poncelet (1788–1867). Special cases ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 