Coronal Seismology
   HOME
*





Coronal Seismology
Coronal seismology is a technique of studying the plasma of the Sun's corona with the use of magnetohydrodynamic (MHD) waves and oscillations. Magnetohydrodynamics studies the dynamics of electrically conducting fluids - in this case the fluid is the coronal plasma. Observed properties of the waves (e.g. period, wavelength, amplitude, temporal and spatial signatures (what is the shape of the wave perturbation?), characteristic scenarios of the wave evolution (is the wave damped?), combined with a theoretical modelling of the wave phenomena (dispersion relations, evolutionary equations, etc.), may reflect physical parameters of the corona which are not accessible ''in situ,'' such as the coronal magnetic field strength and Alfvén velocity and coronal dissipative coefficients. Originally, the method of MHD coronal seismology was suggested by Y. Uchida in 1970 for propagating waves, and B. Roberts et al. in 1984 for standing waves, but was not practically applied until the lat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasma (physics)
Plasma ()πλάσμα
, Henry George Liddell, Robert Scott, ''A Greek English Lexicon'', on Perseus
is one of the four fundamental states of matter. It contains a significant portion of charged particles – ions and/or s. The presence of these charged particles is what primarily sets plasma apart from the other fundamental states of matter. It is the most abundant form of ordi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Publications Of The Astronomical Society Of Japan
''Publications of the Astronomical Society of Japan'' (PASJ) is a peer-reviewed scientific journal of astronomy published by the Astronomical Society of Japan on a bimonthly basis. The journal was established in 1949. The current editor-in-chief is S. Nagataki. See also *List of astronomy journals This is a list of scientific journals publishing articles in astronomy, astrophysics, and space sciences. A B * ''Baltic Astronomy'' * '' Bulletin of the American Astronomical Society'' *''Bulgarian Astronomical Journal'' * ''Bulletin of the As ... External links ''Publications of the Astronomical Society of Japan'' website Astronomy journals Bimonthly journals Publications established in 1949 English-language journals Academic journals published by learned and professional societies {{astronomy-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magnetosonic Wave
A magnetosonic wave, also called a magnetoacoustic wave, is a linear magnetohydrodynamic (MHD) wave that is driven by thermal pressure, magnetic pressure, and magnetic tension. There are two types of magnetosonic waves, the ''fast'' magnetosonic wave and the ''slow'' magnetosonic wave. Both fast and slow magnetosonic waves are present in the solar corona providing an observational foundation for the technique for coronal plasma diagnostics, coronal seismology. Homogeneous plasma In an ideal homogeneous plasma of infinite extent, and in the absence of gravity, the fast and slow magnetosonic waves form, together with the Alfvén wave, the three basic linear MHD waves. Under the assumption of normal modes, namely that the linear perturbations of the physical quantities are of the form :f_1=\tilde_1 e^ (with the constant amplitude), a dispersion relation of the magnetosonic waves can be derived from the system of ideal MHD equations: :\omega^4 - k^2 \left(v_\mathrm^2+v_\mathrm^2\r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Oblique Shock
An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the incident upstream flow direction. It will occur when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. The upstream streamlines are uniformly deflected after the shock wave. The most common way to produce an oblique shock wave is to place a wedge into supersonic, compressible flow. Similar to a normal shock wave, the oblique shock wave consists of a very thin region across which nearly discontinuous changes in the thermodynamic properties of a gas occur. While the upstream and downstream flow directions are unchanged across a normal shock, they are different for flow across an oblique shock wave. It is always possible to convert an oblique shock into a normal shock by a Galilean transformation. Wave theory For a given Mach number, M1, and corner angle, θ, the oblique shock angle, β, and the downstream Mach number, M2, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transverse Wave
In physics, a transverse wave is a wave whose oscillations are perpendicular to the direction of the wave's advance. This is in contrast to a longitudinal wave which travels in the direction of its oscillations. Water waves are an example of transverse wave. A simple example is given by the waves that can be created on a horizontal length of string by anchoring one end and moving the other end up and down. Another example is the waves that are created on the membrane of a drum. The waves propagate in directions that are parallel to the membrane plane, but each point in the membrane itself gets displaced up and down, perpendicular to that plane. Light is another example of a transverse wave, where the oscillations are the electric and magnetic fields, which point at right angles to the ideal light rays that describe the direction of propagation. Transverse waves commonly occur in elastic solids due to the shear stress generated; the oscillations in this case are the displac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wave Propagation
Wave propagation is any of the ways in which waves travel. Single wave propagation can be calculated by 2nd order wave equation ( standing wavefield) or 1st order one-way wave equation. With respect to the direction of the oscillation relative to the propagation direction, we can distinguish between longitudinal wave and transverse waves. For electromagnetic waves, propagation may occur in a vacuum as well as in the material medium. Other wave types cannot propagate through a vacuum and need a transmission medium to exist. Reflection of plane waves in a half-space The propagation and reflection of plane waves—e.g. Pressure waves (P-wave) or Shear waves (SH or SV-waves) are phenomena that were first characterized within the field of classical seismology, and are now considered fundamental concepts in modern seismic tomography. The analytical solution to this problem exists and is well known. The frequency domain solution can be obtained by first finding the Helmholtz deco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polarization (waves)
Polarization ( also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string ''(see image)''; for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves (shear waves) in solids. An electromagnetic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dispersive Mass Transfer
Dispersive mass transfer, in fluid dynamics, is the spreading of mass from highly concentrated areas to less concentrated areas. It is one form of mass transfer. Dispersive mass flux is analogous to diffusion, and it can also be described using Fick's first law: :J = -E \frac, where c is mass concentration of the species being dispersed, E is the dispersion coefficient, and x is the position in the direction of the concentration gradient. Dispersion can be differentiated from diffusion in that it is caused by non-ideal flow patterns (i.e. deviations from plug flow) and is a macroscopic phenomenon, whereas diffusion is caused by random molecular motions (i.e. Brownian motion) and is a microscopic phenomenon. Dispersion is often more significant than diffusion in convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Mode
A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions. The most general motion of a system is a superposition of its normal modes. The modes are normal in the sense that they can move independently, that is to say that an excitation of one mode will never cause motion of a different mode. In mathematical terms, normal modes are orthogonal to each other. General definitions Mode In the wave theory of physics and engineering, a mode in a dynamical system is a standing wave state of exci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Living Reviews In Solar Physics
''Living Reviews in Solar Physics'' is a peer-reviewed open-access scientific journal publishing reviews on all areas of solar and heliospheric physics. It was founded and published at the Max Planck Institute for Solar System Research from 2004-2015. After it was sold by the Max Planck Society in June 2015, it is now published by the academic publisher Springer Science+Business Media Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 .... The articles in '' Living Reviews'' provide critical reviews of the current state of research in the fields they cover. Articles also offer annotated insights into the key literature and describe other available resources. ''Living Reviews'' is unique in maintaining a suite of high-quality reviews, which are kept up-to-date by the authors through ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Waveguide
A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities decrease according to the inverse square law as they expand into three-dimensional space. There are different types of waveguides for different types of waves. The original and most common meaningInstitute of Electrical and Electronics Engineers, “The IEEE standard dictionary of electrical and electronics terms”; 6th ed. New York, N.Y., Institute of Electrical and Electronics Engineers, c1997. IEEE Std 100-1996. d. Standards Coordinating Committee 10, Terms and Definitions; Jane Radatz, (chair)/ref> is a hollow conductive metal pipe used to carry high frequency radio waves, particularly microwaves. Dielectric waveguides are used at higher radio frequencies, and transparent dielectric waveguides and optical fibers serve as waveguides ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coronal Loops
In solar physics, a coronal loop is a well-defined arch-like structure in the Sun's atmosphere made up of relatively dense plasma confined and isolated from the surrounding medium by magnetic flux tubes. Coronal loops begin and end at two footpoints on the photosphere and project into the transition region and lower corona. They typically form and dissipate over periods of seconds to days and may span anywhere from in length. Coronal loops are often associated with the strong magnetic fields located within active regions and sunspots. The number of coronal loops varies with the 11 year solar cycle. Origin and physical features Due to a natural process called the solar dynamo driven by heat produced in the Sun's core, convective motion of the electrically conductive plasma which makes up the Sun creates electric currents, which in turn create powerful magnetic fields in the Sun's interior. These magnetic fields are in the form of closed loops of magnetic flux, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]