HOME
*





Compact Convergence
In mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology. Definition Let (X, \mathcal) be a topological space and (Y,d_) be a metric space. A sequence of functions :f_ : X \to Y, n \in \mathbb, is said to converge compactly as n \to \infty to some function f : X \to Y if, for every compact set K \subseteq X, :f_, _ \to f, _ uniformly on K as n \to \infty. This means that for all compact K \subseteq X, :\lim_ \sup_ d_ \left( f_ (x), f(x) \right) = 0. Examples * If X = (0, 1) \subseteq \mathbb and Y = \mathbb with their usual topologies, with f_ (x) := x^, then f_ converges compactly to the constant function with value 0, but not uniformly. * If X=(0,1], Y=\R and f_n(x)=x^n, then f_n converges pointwise convergence, pointwise to the function that is zero on (0,1) and one at 1, but the sequence does not converge compactly. * A very p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Convergence (mathematics)
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (a_0, a_1, a_2, \ldots) defines a series that is denoted :S=a_0 +a_1+ a_2 + \cdots=\sum_^\infty a_k. The th partial sum is the sum of the first terms of the sequence; that is, :S_n = \sum_^n a_k. A series is convergent (or converges) if the sequence (S_1, S_2, S_3, \dots) of its partial sums tends to a limit; that means that, when adding one a_k after the other ''in the order given by the indices'', one gets partial sums that become closer and closer to a given number. More precisely, a series converges, if there exists a number \ell such that for every arbitrarily small positive number \varepsilon, there is a (sufficiently large) integer N such that for all n \ge N, :\left , S_n - \ell \right , 1 produce a convergent series: *: ++++++\cdots = . * Alternating the signs of reciprocals of powers of 2 also produces a convergent series: *: -+-+-+\cdots ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations. The usage of the word '' functional'' as a noun goes back to the calculus of variations, implying a function whose argument is a function. The term was first used in Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Montel's Theorem
In complex analysis, an area of mathematics, Montel's theorem refers to one of two theorems about families of holomorphic functions. These are named after French mathematician Paul Montel, and give conditions under which a family of holomorphic functions is normal. Locally uniformly bounded families are normal The first, and simpler, version of the theorem states that a family of holomorphic functions defined on an open subset of the complex numbers is normal if and only if it is locally uniformly bounded. This theorem has the following formally stronger corollary. Suppose that \mathcal is a family of meromorphic functions on an open set D. If z_0\in D is such that \mathcal is not normal at z_0, and U\subset D is a neighborhood of z_0, then \bigcup_f(U) is dense in the complex plane. Functions omitting two values The stronger version of Montel's Theorem (occasionally referred to as the Fundamental Normality Test) states that a family of holomorphic functions, all of which om ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Modes Of Convergence (annotated Index)
The purpose of this article is to serve as an annotated index of various modes of convergence and their logical relationships. For an expository article, see Modes of convergence. Simple logical relationships between different modes of convergence are indicated (e.g., if one implies another), formulaically rather than in prose for quick reference, and indepth descriptions and discussions are reserved for their respective articles. ---- ''Guide to this index.'' To avoid excessive verbiage, note that each of the following types of objects is a special case of types preceding it: sets, topological spaces, uniform spaces, topological abelian groups (TAG), normed vector spaces, Euclidean spaces, and the real/complex numbers. Also note that any metric space is a uniform space. Finally, subheadings will always indicate special cases of their superheadings. The following is a list of modes of convergence for: A sequence of elements in a topological space (''Y'') * Convergence, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compactly Generated Space
In topology, a compactly generated space is a topological space whose topology is coherent with the family of all compact subspaces. Specifically, a topological space ''X'' is compactly generated if it satisfies the following condition: :A subspace ''A'' is closed in ''X'' if and only if ''A'' ∩ ''K'' is closed in ''K'' for all compact subspaces ''K'' ⊆ ''X''. Equivalently, one can replace ''closed'' with ''open'' in this definition. If ''X'' is coherent with any cover of compact subspaces in the above sense then it is, in fact, coherent with all compact subspaces. A Hausdorff-compactly generated space or k-space is a topological space whose topology is coherent with the family of all compact Hausdorff subspaces. Sometimes in the literature a compactly generated space refers to a Hausdorff-compactly generated space. In these cases compactness is often explicitly redefined at the beginning to mean both compact and Hausdorff (and quasi-compact takes the meaning of compact). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Compact Space
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively compact neighbourhood ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniformly Bounded
In mathematics, a uniformly bounded family of functions is a family of bounded functions that can all be bounded by the same constant. This constant is larger than or equal to the absolute value of any value of any of the functions in the family. Definition Real line and complex plane Let :\mathcal F=\ be a family of functions indexed by I, where X is an arbitrary set and K is the set of real or complex numbers. We call \mathcal F uniformly bounded if there exists a real number M such that :, f_i(x), \le M \qquad \forall i \in I \quad \forall x \in X. Metric space In general let Y be a metric space with metric d, then the set :\mathcal F=\ is called uniformly bounded if there exists an element a from Y and a real number M such that :d(f_i(x), a) \leq M \qquad \forall i \in I \quad \forall x \in X. Examples * Every uniformly convergent sequence of bounded functions is uniformly bounded. * The family of functions f_n(x)=\sin nx defined for real x with n traveling thr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit Of A Sequence
As the positive integer n becomes larger and larger, the value n\cdot \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n\cdot \sin\left(\tfrac1\right) equals 1." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the \lim symbol (e.g., \lim_a_n).Courant (1961), p. 29. If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers. History The Greek philosopher Zeno of Elea is famous for formulating paradoxes that involve limiting processes. Leucippus, Democritus, Antiphon, Eudoxus, and Archimedes developed the method of exhaustion, which uses an infinite sequence o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Equicontinuous
In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus ''sequences'' of functions. Equicontinuity appears in the formulation of Ascoli's theorem, which states that a subset of ''C''(''X''), the space of continuous functions on a compact Hausdorff space ''X'', is compact if and only if it is closed, pointwise bounded and equicontinuous. As a corollary, a sequence in ''C''(''X'') is uniformly convergent if and only if it is equicontinuous and converges pointwise to a function (not necessarily continuous a-priori). In particular, the limit of an equicontinuous pointwise convergent sequence of continuous functions ''fn'' on either metric space or locally compact space is continuous. If, in addition, ''fn'' are holomorphic, then the limit is also holomorphic. The uniform bou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]