HOME
*





Character Table
In group theory, a branch of abstract algebra, a character table is a two-dimensional table whose rows correspond to irreducible representations, and whose columns correspond to conjugacy classes of group elements. The entries consist of characters, the traces of the matrices representing group elements of the column's class in the given row's group representation. In chemistry, crystallography, and spectroscopy, character tables of point groups are used to classify ''e.g.'' molecular vibrations according to their symmetry, and to predict whether a transition between two states is forbidden for symmetry reasons. Many university level textbooks on physical chemistry, quantum chemistry, spectroscopy and inorganic chemistry devote a chapter to the use of symmetry group character tables. Definition and example The irreducible complex characters of a finite group form a character table which encodes much useful information about the group ''G'' in a compact form. Each row is labelled ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Character Tables For Chemically Important 3D Point Groups
This lists the character tables for the more common molecular point groups used in the study of molecular symmetry. These tables are based on the group-theoretical treatment of the symmetry operations present in common molecules, and are useful in molecular spectroscopy and quantum chemistry. Information regarding the use of the tables, as well as more extensive lists of them, can be found in the references. Notation For each non-linear group, the tables give the most standard notation of the finite group isomorphic to the point group, followed by the order of the group (number of invariant symmetry operations). The finite group notation used is: Zn: cyclic group of order ''n'', Dn: dihedral group isomorphic to the symmetry group of an ''n''–sided regular polygon, Sn: symmetric group on ''n'' letters, and An: alternating group on ''n'' letters. The character tables then follow for all groups. The rows of the character tables correspond to the irreducible representatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Function
In mathematics, especially in the fields of group theory and representation theory of groups, a class function is a function on a group ''G'' that is constant on the conjugacy classes of ''G''. In other words, it is invariant under the conjugation map on ''G''. Such functions play a basic role in representation theory. Characters The character of a linear representation of ''G'' over a field ''K'' is always a class function with values in ''K''. The class functions form the center of the group ring ''K'' 'G'' Here a class function ''f'' is identified with the element \sum_ f(g) g. Inner products The set of class functions of a group ''G'' with values in a field ''K'' form a ''K''-vector space. If ''G'' is finite and the characteristic of the field does not divide the order of ''G'', then there is an inner product defined on this space defined by \langle \phi , \psi \rangle = \frac \sum_ \phi(g) \psi(g^) where , ''G'', denotes the order of ''G''. The set of i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Isomorphism
In abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished. Definition and notation Given two groups (G, *) and (H, \odot), a ''group isomorphism'' from (G, *) to (H, \odot) is a bijective group homomorphism from G to H. Spelled out, this means that a group isomorphism is a bijective function f : G \to H such that for all u and v in G it holds that f(u * v) = f(u) \odot f(v). The two groups (G, *) and (H, \odot) are isomorphic if there exists an isomorphism from one to the other. This is written (G, *) \cong (H, \odot). Often shorter and simpler notations can be used. When the relevant group operations are understood, they are omitted and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Up To
Two mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' with respect to ''R'' are equal. This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, ''x'' is unique up to ''R'' means that all objects ''x'' under consideration are in the same equivalence class with respect to the relation ''R''. Moreover, the equivalence relation ''R'' is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation ''R'' that relates two lists if one can be obtained by reordering (permutation) from the other. As another example, the sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graham Higman
Graham Higman FRS (19 January 1917 – 8 April 2008) was a prominent English mathematician known for his contributions to group theory. Biography Higman was born in Louth, Lincolnshire, and attended Sutton High School, Plymouth, winning a scholarship to Balliol College, Oxford. In 1939 he co-founded The Invariant Society, the student mathematics society, and earned his DPhil from the University of Oxford in 1941. His thesis, ''The units of group-rings'', was written under the direction of J. H. C. Whitehead. From 1960 to 1984 he was the Waynflete Professor of Pure Mathematics at Magdalen College, Oxford. Higman was awarded the Senior Berwick Prize in 1962 and the De Morgan Medal of the London Mathematical Society in 1974. He was the founder of the Journal of Algebra and its editor from 1964 to 1984. Higman had 51 D.Phil. students, including Jonathan Lazare Alperin, Rosemary A. Bailey, Marston Conder, John Mackintosh Howie, and Peter M. Neumann. He was also a loc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Representation Theory
Modular representation theory is a branch of mathematics, and is the part of representation theory that studies linear representations of finite groups over a field ''K'' of positive characteristic ''p'', necessarily a prime number. As well as having applications to group theory, modular representations arise naturally in other branches of mathematics, such as algebraic geometry, coding theory, combinatorics and number theory. Within finite group theory, character-theoretic results proved by Richard Brauer using modular representation theory played an important role in early progress towards the classification of finite simple groups, especially for simple groups whose characterization was not amenable to purely group-theoretic methods because their Sylow 2-subgroups were too small in an appropriate sense. Also, a general result on embedding of elements of order 2 in finite groups called the Z* theorem, proved by George Glauberman using the theory developed by Brauer, was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Brauer
Richard Dagobert Brauer (February 10, 1901 – April 17, 1977) was a leading German and American mathematician. He worked mainly in abstract algebra, but made important contributions to number theory. He was the founder of modular representation theory. Education and career Alfred Brauer was Richard's brother and seven years older. They were born to a Jewish family. Both were interested in science and mathematics, but Alfred was injured in combat in World War I. As a boy, Richard dreamt of becoming an inventor, and in February 1919 enrolled in Technische Hochschule Berlin-Charlottenburg. He soon transferred to University of Berlin. Except for the summer of 1920 when he studied at University of Freiburg, he studied in Berlin, being awarded his PhD on 16 March 1926. Issai Schur conducted a seminar and posed a problem in 1921 that Alfred and Richard worked on together, and published a result. The problem also was solved by Heinz Hopf at the same time. Richard wrote his thesis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Commutator Subgroup
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group. The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, G/N is abelian if and only if N contains the commutator subgroup of G. So in some sense it provides a measure of how far the group is from being abelian; the larger the commutator subgroup is, the "less abelian" the group is. Commutators For elements g and h of a group ''G'', the commutator of g and h is ,h= g^h^gh. The commutator ,h/math> is equal to the identity element ''e'' if and only if gh = hg , that is, if and only if g and h commute. In general, gh = hg ,h/math>. However, the notation is somewhat arbitrary and there is a non-equivalent variant definition for the commutator that has the inverses on the right hand side of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kernel (linear Algebra)
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map between two vector spaces and , the kernel of is the vector space of all elements of such that , where denotes the zero vector in , or more symbolically: :\ker(L) = \left\ . Properties The kernel of is a linear subspace of the domain .Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in , , and Strang's lectures. In the linear map L : V \to W, two elements of have the same image in if and only if their difference lies in the kernel of , that is, L\left(\mathbf_1\right) = L\left(\mathbf_2\right) \quad \text \quad L\left(\mathbf_1-\mathbf_2\right) = \mathbf. From this, it follows that the image of is isomorphic to the quotient of by t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Representation Theory Of Finite Groups
The representation theory of groups is a part of mathematics which examines how groups act on given structures. Here the focus is in particular on operations of groups on vector spaces. Nevertheless, groups acting on other groups or on sets are also considered. For more details, please refer to the section on permutation representations. Other than a few marked exceptions, only finite groups will be considered in this article. We will also restrict ourselves to vector spaces over fields of characteristic zero. Because the theory of algebraically closed fields of characteristic zero is complete, a theory valid for a special algebraically closed field of characteristic zero is also valid for every other algebraically closed field of characteristic zero. Thus, without loss of generality, we can study vector spaces over \Complex. Representation theory is used in many parts of mathematics, as well as in quantum chemistry and physics. Among other things it is used in algebra to exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Representation
In mathematics, and in particular the theory of group representations, the regular representation of a group ''G'' is the linear representation afforded by the group action of ''G'' on itself by translation. One distinguishes the left regular representation λ given by left translation and the right regular representation ρ given by the inverse of right translation. Finite groups For a finite group ''G'', the left regular representation λ (over a field ''K'') is a linear representation on the ''K''-vector space ''V'' freely generated by the elements of ''G'', i. e. they can be identified with a basis of ''V''. Given ''g'' ∈ ''G'', λ''g'' is the linear map determined by its action on the basis by left translation by ''g'', i.e. :\lambda_:h\mapsto gh,\texth\in G. For the right regular representation ρ, an inversion must occur in order to satisfy the axioms of a representation. Specifically, given ''g'' ∈ ''G'', ρ''g'' is the linear map on ''V' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]