Chain Rule
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x)=f(g(x)) for every , then the chain rule is, in Lagrange's notation, :h'(x) = f'(g(x)) g'(x). or, equivalently, :h'=(f\circ g)'=(f'\circ g)\cdot g'. The chain rule may also be expressed in Leibniz's notation. If a variable depends on the variable , which itself depends on the variable (that is, and are dependent variables), then depends on as well, via the intermediate variable . In this case, the chain rule is expressed as :\frac = \frac \cdot \frac, and : \left.\frac\_ = \left.\frac\_ \cdot \left. \frac\_ , for indicating at which points the derivatives have to be evaluated. In integration, the counterpart to the chain rule is the substitution rule. Intuitive explanation Intuitively, the chain rule states that knowing the instantaneous rate of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. It has two major branches, differential calculus and integral calculus; the former concerns instantaneous Rate of change (mathematics), rates of change, and the slopes of curves, while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence (mathematics), convergence of infinite sequences and Series (mathematics), infinite series to a welldefined limit (mathematics), limit. Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Later work, including (ε, δ)definition of ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Product Rule
In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v + u \cdot v' or in Leibniz's notation as \frac (u\cdot v) = \frac \cdot v + u \cdot \frac. The rule may be extended or generalized to products of three or more functions, to a rule for higherorder derivatives of a product, and to other contexts. Discovery Discovery of this rule is credited to Gottfried Leibniz, who demonstrated it using differentials. (However, J. M. Child, a translator of Leibniz's papers, argues that it is due to Isaac Barrow.) Here is Leibniz's argument: Let ''u''(''x'') and ''v''(''x'') be two differentiable functions of ''x''. Then the differential of ''uv'' is : \begin d(u\cdot v) & = (u + du)\cdot (v + dv)  u\cdot v \\ & = u\cdot dv + v\cdot du + du\cdot dv. \end Since the term ''du''·''dv'' is "negli ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Standard Part
In nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every such hyperreal x, the unique real x_0 infinitely close to it, i.e. xx_0 is infinitesimal. As such, it is a mathematical implementation of the historical concept of adequality introduced by Pierre de Fermat,Karin Usadi Katz and Mikhail G. Katz (2011) A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography. Foundations of Science.Searxiv The authors refer to the FermatRobinson standard part. as well as Leibniz's Transcendental law of homogeneity. The standard part function was first defined by Abraham Robinson who used the notation ^x for the standard part of a hyperreal x (see Robinson 1974). This concept plays a key role in defining the concepts of the calculus, such as continuity, the derivati ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Étienne Bézout
Étienne Bézout (; 31 March 1730 – 27 September 1783) was a French mathematician who was born in Nemours, SeineetMarne, France, and died in Avon (near Fontainebleau), France. Work In 1758 Bézout was elected an adjoint in mechanics of the French Academy of Sciences. Besides numerous minor works, he wrote a ''Théorie générale des équations algébriques'', published at Paris in 1779, which in particular contained much new and valuable matter on the theory of elimination and symmetrical functions of the roots of an equation: he used determinants in a paper in the ''Histoire de l'académie royale'', 1764, but did not treat the general theory. Publications * Legacy After his death, a statue was erected in his birth town, Nemours, to commemorate his achievements. In 2000, the minor planet 17285 Bezout was named after him. See also * Little Bézout's theorem * Bézout's theorem * Bézout's identity * Bézout matrix * Bézout domain References *''The original ver ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Polynomial Remainder Theorem
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positiveinteger powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' joins t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Hölder Condition
In mathematics, a real or complexvalued function ''f'' on ''d''dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are nonnegative real constants ''C'', α > 0, such that : , f(x)  f(y) , \leq C\, x  y\, ^ for all ''x'' and ''y'' in the domain of ''f''. More generally, the condition can be formulated for functions between any two metric spaces. The number α is called the ''exponent'' of the Hölder condition. A function on an interval satisfying the condition with α > 1 is constant. If α = 1, then the function satisfies a Lipschitz condition. For any α > 0, the condition implies the function is uniformly continuous. The condition is named after Otto Hölder. We have the following chain of strict inclusions for functions over a closed and bounded nontrivial interval of the real line: : Continuously differentiable ⊂ Lipschitz continuous ⊂ αHölder continuous ⊂ uniformly continuous ⊂ continuous, ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Lipschitz Continuity
In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the ''Lipschitz constant'' of the function (or '' modulus of uniform continuity''). For instance, every function that has bounded first derivatives is Lipschitz continuous. In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixedpoint theorem. We have the following chain of strict inc ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

The American Mathematical Monthly
''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. In this the ''American Mathematical Monthly'' fulfills a different role from that of typical mathematical research journals. The ''American Mathematical Monthly'' is the most widely read mathematics journal in the world according to records on JSTOR. Tables of contents with article abstracts from 1997–2010 are availablonline The MAA gives the Lester R. Ford Awards annually to "authors of articles of expository excellence" published in the ''American Mathematical Monthly''. Editors *2022� ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Constantin Carathéodory
Constantin Carathéodory ( el, Κωνσταντίνος Καραθεοδωρή, Konstantinos Karatheodori; 13 September 1873 – 2 February 1950) was a Greek mathematician who spent most of his professional career in Germany. He made significant contributions to real and complex analysis, the calculus of variations, and measure theory. He also created an axiomatic formulation of thermodynamics. Carathéodory is considered one of the greatest mathematicians of his era and the most renowned Greek mathematician since antiquity. Origins Constantin Carathéodory was born in 1873 in Berlin to Greek parents and grew up in Brussels. His father Stephanos, a lawyer, served as the Ottoman ambassador to Belgium, St. Petersburg and Berlin. His mother, Despina, née Petrokokkinos, was from the island of Chios. The Carathéodory family, originally from Bosnochori or Vyssa, was well established and respected in Constantinople, and its members held many important governmental positions. Th ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Division By Zero
In mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as \tfrac, where is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is no number that, when multiplied by , gives (assuming a \neq 0); thus, division by zero is undefined. Since any number multiplied by zero is zero, the expression \tfrac is also undefined; when it is the form of a limit, it is an indeterminate form. Historically, one of the earliest recorded references to the mathematical impossibility of assigning a value to \tfrac is contained in AngloIrish philosopher George Berkeley's criticism of infinitesimal calculus in 1734 in '' The Analyst'' ("ghosts of departed quantities"). There are mathematical structures in which \tfrac is defined for some such as in the Riemann sphere (a model of the extended complex plane) and the Projectively extended real line; however, such structures do not satisf ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 

Difference Quotient
In singlevariable calculus, the difference quotient is usually the name for the expression : \frac which when taken to the limit as ''h'' approaches 0 gives the derivative of the function ''f''. The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (''x'' + ''h'')  ''x'' = ''h'' in this case). The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length ''h''). The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change. By a slight change in notation (and viewpoint), for an interval 'a'', ''b'' the difference quotient : \frac is called the mean (or average) value of the derivative of ''f'' over the interval 'a'', ''b'' This name is justified by the mean value theorem, which states that for a differentiable function '' ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] 