Crosstabulation
   HOME





Crosstabulation
In statistics, a contingency table (also known as a cross tabulation or crosstab) is a type of table in a matrix format that displays the multivariate frequency distribution of the variables. They are heavily used in survey research, business intelligence, engineering, and scientific research. They provide a basic picture of the interrelation between two variables and can help find interactions between them. The term ''contingency table'' was first used by Karl Pearson in "On the Theory of Contingency and Its Relation to Association and Normal Correlation", part of the '' Drapers' Company Research Memoirs Biometric Series I'' published in 1904. A crucial problem of multivariate statistics is finding the (direct-)dependence structure underlying the variables contained in high-dimensional contingency tables. If some of the conditional independences are revealed, then even the storage of the data can be done in a smarter way (see Lauritzen (2002)). In order to do this one can use inf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments. When census data (comprising every member of the target population) cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling assures that inferences and conclusions can reasonably extend from the sample ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fisher's Exact Test
Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. Although in practice it is employed when sample sizes are small, it is valid for all sample sizes. The test assumes that all row and column sums of the contingency table were fixed by design and tends to be conservative and underpowered outside of this setting. It is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis (e.g., ''p''-value) can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests. The test is named after its inventor, Ronald Fisher, who is said to have devised the test following a comment from Muriel Bristol, who claimed to be able to detect whether the tea or the milk was added first to her cup. He tested her claim in the "lady tasting tea" experiment. Purpose and scope The te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goodman And Kruskal's Lambda
In probability theory and statistics, Goodman & Kruskal's lambda (\lambda) is a measure of proportional reduction in error in cross tabulation analysis. For any sample with a nominal independent variable and dependent variable (or ones that can be treated nominally), it indicates the extent to which the modal categories and frequencies for each value of the independent variable differ from the overall modal category and frequency, i.e., for all values of the independent variable together. \lambda is defined by the equation :\lambda = \frac. where :\varepsilon_1 is the overall non-modal frequency, and :\varepsilon_2 is the sum of the non-modal frequencies for each value of the independent variable. Values for lambda range from zero (no association between independent and dependent variables) to one ( perfect association). Weaknesses Although Goodman and Kruskal's lambda is a simple way to assess the association between variables, it yields a value of 0 (no association) wheneve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pearson Correlation Coefficient
In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations. As a simple example, one would expect the age and height of a sample of children from a school to have a Pearson correlation coefficient significantly greater than 0, but less than 1 (as 1 would represent an unrealistically perfect correlation). Naming and history It was developed by Karl Pearson from a related idea introduced by Francis Galton in the 1880s, and for which the mathematical formula was derived and published by Auguste Bravais in 1844. The nami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dichotomy
A dichotomy () is a partition of a set, partition of a whole (or a set) into two parts (subsets). In other words, this couple of parts must be * jointly exhaustive: everything must belong to one part or the other, and * mutually exclusive: nothing can belong simultaneously to both parts. If there is a concept A, and it is split into parts B and not-B, then the parts form a dichotomy: they are mutually exclusive, since no part of B is contained in not-B and vice versa, and they are jointly exhaustive, since they cover all of A, and together again give A. Such a partition is also frequently called a bipartition. The two parts thus formed are Complement (set theory), complements. In logic, the partitions are dual (category theory), opposites if there exists a proposition such that it holds over one and not the other. Treating continuous variables or multicategorical variables as binary variables is called discretization, dichotomization. The discretization error inherent in dichoto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polychoric Correlation
In statistics, polychoric correlation{{Cite web, url=https://support.sas.com/documentation/cdl/en/procstat/65543/HTML/default/viewer.htm#procstat_corr_details14.htm, title=Base SAS(R) 9.3 Procedures Guide: Statistical Procedures, Second Edition, website=support.sas.com, language=en, access-date=2018-01-10 is a technique for estimating the correlation between two hypothesised normally distributed continuous latent variables, from two observed ordinal variables. Tetrachoric correlation is a special case of the polychoric correlation applicable when both observed variables are dichotomous. These names derive from the polychoric and tetrachoric series which are used for estimation of these correlations. Applications and examples This technique is frequently applied when analysing items on self-report instruments such as personality tests and surveys that often use rating scales with a small number of response options (e.g., strongly disagree to strongly agree). The smaller the numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cramér's V
In statistics, Cramér's V (sometimes referred to as Cramér's phi and denoted as φ''c'') is a measure of association between two nominal variables, giving a value between 0 and +1 (inclusive). It is based on Pearson's chi-squared statistic and was published by Harald Cramér in 1946. Usage and interpretation φ''c'' is the intercorrelation of two discrete variablesSheskin, David J. (1997). Handbook of Parametric and Nonparametric Statistical Procedures. Boca Raton, Fl: CRC Press. and may be used with variables having two or more levels. φ''c'' is a symmetrical measure: it does not matter which variable we place in the columns and which in the rows. Also, the order of rows/columns does not matter, so φ''c'' may be used with nominal data types or higher (notably, ordered or numerical). Cramér's V varies from 0 (corresponding to no association between the variables) to 1 (complete association) and can reach 1 only when each variable is completely determined by the other. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Main Diagonal
In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix A is the list of entries a_ where i = j. All off-diagonal elements are zero in a diagonal matrix. The following four matrices have their main diagonals indicated by red ones: \begin \color & 0 & 0\\ 0 & \color & 0\\ 0 & 0 & \color\end \qquad \begin \color & 0 & 0 & 0 \\ 0 & \color & 0 & 0 \\ 0 & 0 & \color & 0 \end \qquad \begin \color & 0 & 0 \\ 0 & \color & 0 \\ 0 & 0 & \color \\ 0 & 0 & 0 \end \qquad \begin \color & 0 & 0 & 0 \\ 0 & \color & 0 & 0 \\ 0 & 0 & \color & 0 \\ 0 & 0 & 0 & \color \end Square matrices For a square matrix, the ''diagonal'' (or ''main diagonal'' or ''principal diagonal'') is the diagonal line of entries running from the top-left corner to the bottom-right corner. For a matrix A with row index specified by i and column index specified by j, these would be entries A_ with i = j. For example, the iden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phi Coefficient
In statistics, the phi coefficient, or mean square contingency coefficient, denoted by ''φ'' or ''r''''φ'', is a measure of association for two binary variables. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975. Introduced by Karl Pearson,Cramer, H. (1946). ''Mathematical Methods of Statistics''. Princeton: Princeton University Press, p. 282 (second paragraph). https://archive.org/details/in.ernet.dli.2015.223699 and also known as the ''Yule phi coefficient'' from its introduction by Udny Yule in 1912 this measure is similar to the Pearson correlation coefficient in its interpretation. In meteorology, the phi coefficient, or its square (the latter aligning with M. H. Doolittle's original proposition from 1885), is referred to as the Doolittle Skill Score or the Doolittle Measure of Association. Definition A Pears ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Goodman And Kruskal's Gamma
In statistics, Goodman and Kruskal's gamma is a measure of rank correlation, i.e., the similarity of the orderings of the data when ranked by each of the quantities. It measures the strength of association of the cross tabulated data when both variables are measured at the ordinal level. It makes no adjustment for either table size or ties. Values range from −1 (100% negative association, or perfect inversion) to +1 (100% positive association, or perfect agreement). A value of zero indicates the absence of association. This statistic (which is distinct from Goodman and Kruskal's lambda) is named after Leo Goodman and William Kruskal, who proposed it in a series of papers from 1954 to 1972. Definition The estimate of gamma, ''G'', depends on two quantities: :*''Ns'', the number of pairs of cases ranked in the same order on both variables (number of concordant pairs), :*''Nd'', the number of pairs of cases ranked in reversed order on both variables (number of reversed pairs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]