Crossed Product
In mathematics, a crossed product is a basic method of constructing a new von Neumann algebra from a von Neumann algebra acted on by a group. It is related to the semidirect product construction for groups. (Roughly speaking, ''crossed product'' is the expected structure for a group ring of a semidirect product group. Therefore crossed products have a ring theory aspect also. This article concentrates on an important case, where they appear in functional analysis.) Motivation Recall that if we have two finite groups G and ''N'' with an action of ''G'' on ''N'' we can form the semidirect product N \rtimes G. This contains ''N'' as a normal subgroup, and the action of ''G'' on ''N'' is given by conjugation in the semidirect product. We can replace ''N'' by its complex group algebra ''C'' 'N'' and again form a product C \rtimes G in a similar way; this algebra is a sum of subspaces ''gC'' 'N''as ''g'' runs through the elements of ''G'', and is the group algebra of N \rtimes G. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
John Von Neumann
John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, integrating Basic research, pure and Applied science#Applied research, applied sciences and making major contributions to many fields, including mathematics, physics, economics, computing, and statistics. He was a pioneer in building the mathematical framework of quantum physics, in the development of functional analysis, and in game theory, introducing or codifying concepts including Cellular automaton, cellular automata, the Von Neumann universal constructor, universal constructor and the Computer, digital computer. His analysis of the structure of self-replication preceded the discovery of the structure of DNA. During World War II, von Neumann worked on the Manhattan Project. He developed the mathematical models behind the explosive lense ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Commutant
In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set \operatorname_G(S) of elements of ''G'' that commute with every element of ''S'', or equivalently, the set of elements g\in G such that conjugation by g leaves each element of ''S'' fixed. The normalizer of ''S'' in ''G'' is the set of elements \mathrm_G(S) of ''G'' that satisfy the weaker condition of leaving the set S \subseteq G fixed under conjugation. The centralizer and normalizer of ''S'' are subgroups of ''G''. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets ''S''. Suitably formulated, the definitions also apply to semigroups. In ring theory, the centralizer of a subset of a ring is defined with respect to the multiplication of the ring (a semigroup operation). The centralizer of a subset of a ring ''R'' is a subring of ''R''. This article also deals with centralizers and nor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Tomita–Takesaki Theory
In the theory of von Neumann algebras, a part of the mathematical field of functional analysis, Tomita–Takesaki theory is a method for constructing modular automorphisms of von Neumann algebras from the polar decomposition of a certain involution. It is essential for the theory of type III factors, and has led to a good structure theory for these previously intractable objects. The theory was introduced by , but his work was hard to follow and mostly unpublished, and little notice was taken of it until wrote an account of Tomita's theory. Modular automorphisms of a state Suppose that ''M'' is a von Neumann algebra acting on a Hilbert space ''H'', and Ω is a cyclic and separating vector of ''H'' of norm 1. (Cyclic means that ''MΩ'' is dense in ''H'', and separating means that the map from ''M'' to ''MΩ'' is injective.) We write \phi for the vector state \phi(x) = (x\Omega, \Omega) of ''M'', so that ''H'' is constructed from \phi using the Gelfand–Naimark–Segal construc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Type III Factor
Type may refer to: Science and technology Computing * Typing, producing text via a keyboard, typewriter, etc. * Data type, collection of values used for computations. * File type * TYPE (DOS command), a command to display contents of a file. * Type (Unix), a command in POSIX shells that gives information about commands. * Type safety, the extent to which a programming language discourages or prevents type errors. * Type system, defines a programming language's response to data types. Mathematics * Type (model theory) * Type theory, basis for the study of type systems * Arity or type, the number of operands a function takes * Type, any proposition or set in the intuitionistic type theory * Type, of an entire function ** Exponential type Biology * Type (biology), which fixes a scientific name to a taxon * Dog type, categorization by use or function of domestic dogs Lettering * Type is a design concept for lettering used in typography which helped bring about modern textual prin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Alain Connes
Alain Connes (; born 1 April 1947) is a French mathematician, known for his contributions to the study of operator algebras and noncommutative geometry. He was a professor at the , , Ohio State University and Vanderbilt University. He was awarded the Fields Medal in 1982. Career Alain Connes attended high school at in Marseille, and was then a student of the classes préparatoires in . Between 1966 and 1970 he studied at École normale supérieure in Paris, and in 1973 he obtained a PhD from Pierre and Marie Curie University, under the supervision of Jacques Dixmier. From 1970 to 1974 he was research fellow at the French National Centre for Scientific Research and during 1975 he held a visiting position at Queen's University at Kingston in Canada. In 1976 he returned to France and worked as professor at Pierre and Marie Curie University until 1980 and at CNRS between 1981 and 1984. Moreover, since 1979 he holds the Léon Motchane Chair at IHES. From 1984 until his retir ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
C* Algebras
In mathematics, specifically in functional analysis, a C∗-algebra (pronounced "C-star") is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra ''A'' of continuous linear operators on a complex Hilbert space with two additional properties: * ''A'' is a topologically closed set in the norm topology of operators. * ''A'' is closed under the operation of taking adjoints of operators. Another important class of non-Hilbert C*-algebras includes the algebra C_0(X) of complex-valued continuous functions on ''X'' that vanish at infinity, where ''X'' is a locally compact Hausdorff space. C*-algebras were first considered primarily for their use in quantum mechanics to model algebras of physical observables. This line of research began with Werner Heisenberg's matrix mechanics and in a more mathematically developed form with Pascual Jordan around 1933. Subsequently, John von Neumann attempted to establis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Hopf Algebra
In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously a ( unital associative) algebra and a (counital coassociative) coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations. Hopf algebras occur naturally in algebraic topology, where they originated and are related to the H-space concept, in group scheme theory, in group theory (via the concept of a group ring), and in numerous other places, making them probably the most familiar type of bialgebra. Hopf algebras are also studied in their own right, with much work on specific classes of examples on the one hand and classification problems o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Locally Compact Quantum Group
In mathematics and theoretical physics, a locally compact quantum group is a C*-algebraic approach toward quantum groups that generalizes the Kac algebra, compact-quantum-group and Hopf-algebra approaches. Earlier attempts at a unifying definition of quantum groups using, for example, multiplicative unitaries have enjoyed some success but have also encountered several technical problems. One of the main features distinguishing this new approach from its predecessors is the axiomatic existence of left and right invariant weights. This gives a noncommutative analogue of left and right Haar measures on a locally compact Hausdorff group. Definitions Before we can even begin to properly define a locally compact quantum group, we first need to define a number of preliminary concepts and also state a few theorems. Definition (weight). Let A be a C*-algebra, and let A_ denote the set of positive elements of A . A weight on A is a function \phi: A_ \to ,\infty such that * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Non-abelian Group
In mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (''G'', ∗) in which there exists at least one pair of elements ''a'' and ''b'' of ''G'', such that ''a'' ∗ ''b'' ≠ ''b'' ∗ ''a''. This class of groups contrasts with the abelian groups, where all pairs of group elements commute. Non-abelian groups are pervasive in mathematics and physics. One of the simplest examples of a non-abelian group is the dihedral group of order 6. It is the smallest finite non-abelian group. A common example from physics is the rotation group SO(3) in three dimensions (for example, rotating something 90 degrees along one axis and then 90 degrees along a different axis is not the same as doing them in reverse order). Both discrete groups and continuous groups may be non-abelian. Most of the interesting Lie groups are non-abelian, and these play an important role in gauge theory. See also * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Fixed Point Algebra
Fixed may refer to: * Fixed (EP), ''Fixed'' (EP), EP by Nine Inch Nails * Fixed (film), ''Fixed'' (film), an upcoming animated film directed by Genndy Tartakovsky * Fixed (typeface), a collection of monospace bitmap fonts that is distributed with the X Window System * Fixed, subjected to neutering * Fixed point (mathematics), a point that is mapped to itself by the function * Fixed line telephone, landline See also * * * Fix (other) * Fixer (other) * Fixing (other) * Fixture (other) {{disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |