HOME





Congruence Of Squares
In number theory, a congruence of squares is a congruence commonly used in integer factorization algorithms. Derivation Given a positive integer ''n'', Fermat's factorization method relies on finding numbers ''x'' and ''y'' satisfying the equality :x^2 - y^2 = n We can then factor ''n'' = ''x''2 − ''y''2 = (''x'' + ''y'')(''x'' − ''y''). This algorithm is slow in practice because we need to search many such numbers, and only a few satisfy the equation. However, ''n'' may also be factored if we can satisfy the weaker congruence of squares conditions: :x^2 \equiv y^2 \pmod :x \not\equiv \pm y \,\pmod From here we easily deduce :x^2 - y^2 \equiv 0 \pmod :(x + y)(x - y) \equiv 0 \pmod This means that ''n'' divides the product (''x'' + ''y'')(''x'' − ''y''). The second non-triviality condition guarantees that ''n'' does not divide (''x'' + ''y'') nor (''x'' − ''y'') individua ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory can often be understood through the study of Complex analysis, analytical objects, such as the Riemann zeta function, that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, as for instance how irrational numbers can be approximated by fractions (Diophantine approximation). Number theory is one of the oldest branches of mathematics alongside geometry. One quirk of number theory is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Factor Base
In computational number theory, a factor base is a small set of prime numbers commonly used as a mathematical tool in algorithms involving extensive sieving for potential factors of a given integer. Usage in factoring algorithms A factor base is a relatively small set of distinct prime numbers ''P'', sometimes together with −1. Say we want to factorize an integer ''n''. We generate, in some way, a large number of integer pairs (''x'', ''y'') for which x \neq \pm y, x^2 \equiv y^2 \pmod, and x^2 \pmod \texty^2 \pmod can be completely factorized over the chosen factor base—that is, all their prime factors are in ''P''. In practice, several integers ''x'' are found such that x^2 \pmod has all of its prime factors in the pre-chosen factor base. We represent each x^2 \pmod expression as a vector of a matrix with integer entries being the exponents of factors in the factor base. Linear combinations of the rows corresponds to multiplication of these expressions. A linear dependence r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integer Factorization Algorithms
In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number. For example, is a composite number because , but is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example . Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer using mental or pen-and-paper arithmetic, the simplest method is trial division: checking if the number is divisible by prime numbers , , , and so on, up to the square root of . For larger numbers, especially when using a computer, various more sophis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivalence (mathematics)
Equivalence or Equivalent may refer to: Arts and entertainment *Album-equivalent unit, a measurement unit in the music industry *Equivalence class (music) *'' Equivalent VIII'', or ''The Bricks'', a minimalist sculpture by Carl Andre *'' Equivalents'', a series of photographs of clouds by Alfred Stieglitz Language *Dynamic and formal equivalence in translation * Equivalence (formal languages) Law *The doctrine of equivalents in patent law *The equivalence principle as if impacts on the direct effect of European Union law Logic *Logical equivalence, where two statements are logically equivalent if they have the same logical content * Material equivalence, a relationship where the truth of either one of the connected statements requires the truth of the other Science and technology Chemistry * Equivalent (chemistry) *Equivalence point * Equivalent weight Computing * Turing equivalence (theory of computation), or Turing completeness *Semantic equivalence in computer metadata ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Congruence Relation
In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group (mathematics), group, ring (mathematics), ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding Equivalence class, quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation. Definition The definition of a congruence depends on the type of algebraic structure under consideration. Particular definitions of congruence can be made for group (mathematics), groups, ring (mathematics), rings, vector spaces, module (mathematics), modules, semigroups, lattice (order), lattices, and so forth. The common theme is that a congruence is an equivalence relation on an algebraic object that is compatible with the algebraic structure, in the sense that the operat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the Property (mathematics), property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers with decimals or fractions like 1/2 or 4.6978. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Embarrassingly Parallel
In parallel computing, an embarrassingly parallel workload or problem (also called embarrassingly parallelizable, perfectly parallel, delightfully parallel or pleasingly parallel) is one where little or no effort is needed to split the problem into a number of parallel tasks. This is due to minimal or no dependency upon communication between the parallel tasks, or for results between them.Section 1.4.4 of: These differ from distributed computing problems, which need communication between tasks, especially communication of intermediate results. They are easier to perform on server farms which lack the special infrastructure used in a true supercomputer cluster. They are well-suited to large, Internet-based volunteer computing platforms such as BOINC, and suffer less from parallel slowdown. The opposite of embarrassingly parallel problems are inherently serial problems, which cannot be parallelized at all. A common example of an embarrassingly parallel problem is 3D video renderi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Elimination
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855). To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations: * Swapping two rows, * Multiplying a row by a nonzero number, * Adding a multiple of one row to another row. Using these operations, a matrix can always be transformed into an upper triangular matrix (possibly bordered by rows or columns of zeros), and in fact one that is in row echelon form. Once all of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

System Of Linear Equations
In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variable (math), variables. For example, : \begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of three equations in the three variables . A ''Solution (mathematics), solution'' to a linear system is an assignment of values to the variables such that all the equations are simultaneously satisfied. In the example above, a solution is given by the Tuple, ordered triple (x,y,z)=(1,-2,-2), since it makes all three equations valid. Linear systems are a fundamental part of linear algebra, a subject used in most modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and economics. A Nonlinear system, system of non-linear equations can often be Approximation, approximated by a linear system (see linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logical Matrix
A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1)-matrix is a matrix with entries from the Boolean domain Such a matrix can be used to represent a binary relation between a pair of finite sets. It is an important tool in combinatorial mathematics and theoretical computer science. Matrix representation of a relation If ''R'' is a binary relation between the finite indexed sets ''X'' and ''Y'' (so ), then ''R'' can be represented by the logical matrix ''M'' whose row and column indices index the elements of ''X'' and ''Y'', respectively, such that the entries of ''M'' are defined by :m_ = \begin 1 & (x_i, y_j) \in R, \\ 0 & (x_i, y_j) \not\in R. \end In order to designate the row and column numbers of the matrix, the sets ''X'' and ''Y'' are indexed with positive integers: ''i'' ranges from 1 to the cardinality (size) of ''X'', and ''j'' ranges from 1 to the cardinality of ''Y''. See the article on indexed sets for more detail. The transpose ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Square (algebra)
In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation. Squaring is the same as raising to the power  2, and is denoted by a superscript 2; for instance, the square of 3 may be written as 32, which is the number 9. In some cases when superscripts are not available, as for instance in programming languages or plain text files, the notations ''x''^2 ( caret) or ''x''**2 may be used in place of ''x''2. The adjective which corresponds to squaring is '' quadratic''. The square of an integer may also be called a '' square number'' or a ''perfect square''. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial is the quadratic polynomial . One of the important properties of squaring, for numbers as well as in many other mathematical systems, is that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]